The real big-data problem and why only machine learning can fix it - SiliconANGLE

#artificialintelligence

Why do so many companies still struggle to build a smooth-running pipeline from data to insights? They invest in heavily hyped machine-learning algorithms to analyze data and make business predictions. Then, inevitably, they realize that algorithms aren't magic; if they're fed junk data, their insights won't be stellar. So they employ data scientists that spend 90% of their time washing and folding in a data-cleaning laundromat, leaving just 10% of their time to do the job for which they were hired. What is flawed about this process is that companies only get excited about machine learning for end-of-the-line algorithms; they should apply machine learning just as liberally in the early cleansing stages instead of relying on people to grapple with gargantuan data sets, according to Andy Palmer, co-founder and chief executive officer of Tamr Inc., which helps organizations use machine learning to unify their data silos.


Python Training Python For Data Science Learn Python

@machinelearnbot

So, you want to become a data scientist or may be you are already one and want to expand your tool repository. You have landed at the right place. The aim of this page is to provide a comprehensive learning path to people new to python for data analysis. This path provides a comprehensive overview of steps you need to learn to use Python for data analysis. If you already have some background, or don't need all the components, feel free to adapt your own paths and let us know how you made changes in the path.


The Role of Data Curation in Big Data

#artificialintelligence

Good data management practices are essential for ensuring that research data are of high quality, findable, accessible and have high validity. You can then share data ensuring their sustainability and accessibility in the long-term, for new research and policy or to replicate and validate existing research and policy. It is important that researchers extend these practices to their work with all types of data, be it big (large or complex) data or smaller, more'curatable' datasets. In this blog, we are going to understand about the data curation. Furthermore, we will be looking into many other advantages which data curation will bring to the big data table.


Global Big Data Conference

#artificialintelligence

Most organizations understand the importance of fully leveraging the large quantities of data available to them. Yet, most of these organizations are running into a bottleneck that is a relic of old, IT-driven data transformation processes. Back when data consisted of little more than transactional information, IT teams would silo off data centers that were tightly governed and restricted. It was IT's job to provide clean data that the business needed to run reports, as opening up access to data would have been a security nightmare. Additionally, most of the legacy transformation tools required a level of technical expertise that most business professionals at the time did not have.