Cerezo, M., Arrasmith, Andrew, Babbush, Ryan, Benjamin, Simon C., Endo, Suguru, Fujii, Keisuke, McClean, Jarrod R., Mitarai, Kosuke, Yuan, Xiao, Cincio, Lukasz, Coles, Patrick J.

Applications such as simulating large quantum systems or solving large-scale linear algebra problems are immensely challenging for classical computers due their extremely high computational cost. Quantum computers promise to unlock these applications, although fault-tolerant quantum computers will likely not be available for several years. Currently available quantum devices have serious constraints, including limited qubit numbers and noise processes that limit circuit depth. Variational Quantum Algorithms (VQAs), which employ a classical optimizer to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints. VQAs have now been proposed for essentially all applications that researchers have envisioned for quantum computers, and they appear to the best hope for obtaining quantum advantage. Nevertheless, challenges remain including the trainability, accuracy, and efficiency of VQAs. In this review article we present an overview of the field of VQAs. Furthermore, we discuss strategies to overcome their challenges as well as the exciting prospects for using them as a means to obtain quantum advantage.

Biamonte, Jacob, Wittek, Peter, Pancotti, Nicola, Rebentrost, Patrick, Wiebe, Nathan, Lloyd, Seth

Recent progress implies that a crossover between machine learning and quantum information processing benefits both fields. Traditional machine learning has dramatically improved the benchmarking and control of experimental quantum computing systems, including adaptive quantum phase estimation and designing quantum computing gates. On the other hand, quantum mechanics offers tantalizing prospects to enhance machine learning, ranging from reduced computational complexity to improved generalization performance. The most notable examples include quantum enhanced algorithms for principal component analysis, quantum support vector machines, and quantum Boltzmann machines. Progress has been rapid, fostered by demonstrations of midsized quantum optimizers which are predicted to soon outperform their classical counterparts. Further, we are witnessing the emergence of a physical theory pinpointing the fundamental and natural limitations of learning. Here we survey the cutting edge of this merger and list several open problems.

In this talk I will discuss some of the long-term challenges emerging with the effort of making deep learning a relevant tool for controlled scientific discovery in many-body quantum physics. The current state of the art of deep neural quantum states and learning tools will be discussed in connection with open challenging problems in condensed matter physics, including frustrated magnetism and quantum dynamics. Variational algorithms for a gate-based quantum computer, like the QAOA, prescribe a fixed circuit ansatz --- up to a set of continuous parameters --- that is designed to find a low-energy state of a given target Hamiltonian. After reviewing the relevant aspects of the QAOA, I will describe attempts to make the algorithm more efficient. The strategies I will explore are 1) tuning the variational objective function away from the energy expectation value, 2) analytical estimates that allow elimination of some of the gates in the QAOA circuit, and 3) using methods of machine learning to search the design space of nearby circuits for improvements to the original ansatz.

Outeiral, Carlos, Strahm, Martin, Shi, Jiye, Morris, Garrett M., Benjamin, Simon C., Deane, Charlotte M.

Quantum computers can in principle solve certain problems exponentially more quickly than their classical counterparts. We have not yet reached the advent of useful quantum computation, but when we do, it will affect nearly all scientific disciplines. In this review, we examine how current quantum algorithms could revolutionize computational biology and bioinformatics. There are potential benefits across the entire field, from the ability to process vast amounts of information and run machine learning algorithms far more efficiently, to algorithms for quantum simulation that are poised to improve computational calculations in drug discovery, to quantum algorithms for optimization that may advance fields from protein structure prediction to network analysis. However, these exciting prospects are susceptible to "hype", and it is also important to recognize the caveats and challenges in this new technology. Our aim is to introduce the promise and limitations of emerging quantum computing technologies in the areas of computational molecular biology and bioinformatics.

Rocchetto, Andrea, Grant, Edward, Strelchuk, Sergii, Carleo, Giuseppe, Severini, Simone

Studying general quantum many-body systems is one of the major challenges in modern physics because it requires an amount of computational resources that scales exponentially with the size of the system.Simulating the evolution of a state, or even storing its description, rapidly becomes intractable for exact classical algorithms. Recently, machine learning techniques, in the form of restricted Boltzmann machines, have been proposed as a way to efficiently represent certain quantum states with applications in state tomography and ground state estimation. Here, we introduce a new representation of states based on variational autoencoders. Variational autoencoders are a type of generative model in the form of a neural network. We probe the power of this representation by encoding probability distributions associated with states from different classes. Our simulations show that deep networks give a better representation for states that are hard to sample from, while providing no benefit for random states. This suggests that the probability distributions associated to hard quantum states might have a compositional structure that can be exploited by layered neural networks. Specifically, we consider the learnability of a class of quantum states introduced by Fefferman and Umans. Such states are provably hard to sample for classical computers, but not for quantum ones, under plausible computational complexity assumptions. The good level of compression achieved for hard states suggests these methods can be suitable for characterising states of the size expected in first generation quantum hardware.