Collaborating Authors

The World of Reality, Causality and Real Artificial Intelligence: Exposing the Great Unknown Unknowns


"All men by nature desire to know." - Aristotle "He who does not know what the world is does not know where he is." - Marcus Aurelius "If I have seen further, it is by standing on the shoulders of giants." "The universe is a giant causal machine. The world is "at the bottom" governed by causal algorithms. Our bodies are causal machines. Our brains and minds are causal AI computers". The 3 biggest unknown unknowns are described and analyzed in terms of human intelligence and machine intelligence. A deep understanding of reality and its causality is to revolutionize the world, its science and technology, AI machines including. The content is the intro of Real AI Project Confidential Report: How to Engineer Man-Machine Superintelligence 2025: AI for Everything and Everyone (AI4EE). It is all a power set of {known, unknown; known unknown}, known knowns, known unknowns, unknown knowns, and unknown unknowns, like as the material universe's material parts: about 4.6% of baryonic matter, about 26.8% of dark matter, and about 68.3% of dark energy. There are a big number of sciences, all sorts and kinds, hard sciences and soft sciences. But what we are still missing is the science of all sciences, the Science of the World as a Whole, thus making it the biggest unknown unknowns. It is what man/AI does not know what it does not know, neither understand, nor aware of its scope and scale, sense and extent. "the universe consists of objects having various qualities and standing in various relationships" (Whitehead, Russell), "the world is the totality of states of affairs" (D. "World of physical objects and events, including, in particular, biological beings; World of mental objects and events; World of objective contents of thought" (K. How the world is still an unknown unknown one could see from the most popular lexical ontology, WordNet,see supplement. The construct of the world is typically missing its essential meaning, "the world as a whole", the world of reality, the ultimate totality of all worlds, universes, and realities, beings, things, and entities, the unified totalities. The world or reality or being or existence is "all that is, has been and will be". Of which the physical universe and cosmos is a key part, as "the totality of space and times and matter and energy, with all causative fundamental interactions".

The Cognitive Processing of Causal Knowledge Artificial Intelligence

There is a brief description of the probabilistic causal graph model for representing, reasoning with, and learning causal structure using Bayesian networks. It is then argued that this model is closely related to how humans reason with and learn causal structure. It is shown that studies in psychology on discounting (reasoning concerning how the presence of one cause of an effect makes another cause less probable) support the hypothesis that humans reach the same judgments as algorithms for doing inference in Bayesian networks. Next, it is shown how studies by Piaget indicate that humans learn causal structure by observing the same independencies and dependencies as those used by certain algorithms for learning the structure of a Bayesian network. Based on this indication, a subjective definition of causality is forwarded. Finally, methods for further testing the accuracy of these claims are discussed.

CausalKG: Causal Knowledge Graph Explainability using interventional and counterfactual reasoning Artificial Intelligence

Humans use causality and hypothetical retrospection in their daily decision-making, planning, and understanding of life events. The human mind, while retrospecting a given situation, think about questions such as "What was the cause of the given situation?", "What would be the effect of my action?", or "Which action led to this effect?". It develops a causal model of the world, which learns with fewer data points, makes inferences, and contemplates counterfactual scenarios. The unseen, unknown, scenarios are known as counterfactuals. AI algorithms use a representation based on knowledge graphs (KG) to represent the concepts of time, space, and facts. A KG is a graphical data model which captures the semantic relationships between entities such as events, objects, or concepts. The existing KGs represent causal relationships extracted from texts based on linguistic patterns of noun phrases for causes and effects as in ConceptNet and WordNet. The current causality representation in KGs makes it challenging to support counterfactual reasoning. A richer representation of causality in AI systems using a KG-based approach is needed for better explainability, and support for intervention and counterfactuals reasoning, leading to improved understanding of AI systems by humans. The causality representation requires a higher representation framework to define the context, the causal information, and the causal effects. The proposed Causal Knowledge Graph (CausalKG) framework, leverages recent progress of causality and KG towards explainability. CausalKG intends to address the lack of a domain adaptable causal model and represent the complex causal relations using the hyper-relational graph representation in the KG. We show that the CausalKG's interventional and counterfactual reasoning can be used by the AI system for the domain explainability.

To do or not to do: finding causal relations in smart homes Artificial Intelligence

Research in Cognitive Science suggests that humans understand and represent knowledge of the world through causal relationships. In addition to observations, they can rely on experimenting and counterfactual reasoning -- i.e. referring to an alternative course of events -- to identify causal relations and explain atypical situations. Different instances of control systems, such as smart homes, would benefit from having a similar causal model, as it would help the user understand the logic of the system and better react when needed. However, while data-driven methods achieve high levels of correlation detection, they mainly fall short of finding causal relations, notably being limited to observations only. Notably, they struggle to identify the cause from the effect when detecting a correlation between two variables. This paper introduces a new way to learn causal models from a mixture of experiments on the environment and observational data. The core of our method is the use of selected interventions, especially our learning takes into account the variables where it is impossible to intervene, unlike other approaches. The causal model we obtain is then used to generate Causal Bayesian Networks, which can be later used to perform diagnostic and predictive inference. We use our method on a smart home simulation, a use case where knowing causal relations pave the way towards explainable systems. Our algorithm succeeds in generating a Causal Bayesian Network close to the simulation's ground truth causal interactions, showing encouraging prospects for application in real-life systems.

A Primer on Causal Analysis Machine Learning

We provide a conceptual map to navigate causal analysis problems. Focusing on the case of discrete random variables, we consider the case of causal effect estimation from observational data. The presented approaches apply also to continuous variables, but the issue of estimation becomes more complex. We then introduce the four schools of thought for causal analysis