Killer Robots? Lost Jobs?


The recent win of AlphaGo over Lee Sedol--one of the world's highest ranked Go players--has resurfaced concerns about artificial intelligence. We have heard about A.I. stealing jobs, killer robots, algorithms that help diagnose and cure cancer, competent self-driving cars, perfect poker players, and more. It seems that for every mention of A.I. as humanity's top existential risk, there is a mention of its power to solve humanity's biggest challenges. Demis Hassabis--founder of Google DeepMind, the company behind AlphaGo--views A.I. as "potentially a meta-solution to any problem," and Eric Horvitz--director of research at Microsoft's Redmond, Washington, lab--claims that "A.I. will be incredibly empowering to humanity." By contrast, Bill Gates has called A.I. "a huge challenge" and something to "worry about," and Stephen Hawking has warned about A.I. ending humanity.

How a Bayesian Approaches Games Like Chess

AAAI Conferences

Eric B. Baum 1 NEC Research Institute, 4 Independence Way, Princeton NJ 08540 eric@research.NJ.NEC.COM Abstract The point of game tree search is to insulate oneself from errors in the evaluation function. The standard approach is to grow a full width tree as deep as time allows, and then value the tree as if the leaf evaluations were exact. This has been effective in many games because of the computational efficiency of the alpha-beta algorithm. A Bayesian would suggest instead to train a model of one's uncertainty. This model adds extra information in addition to the standard evaluation function. Within such a formal model, there is an optimal tree growth procedure and an optimal method of valueing the tree. We describe how to optimally value the tree, and how to approximate on line the optimal tree to search.

OpenAI teaches a robotic hand to solve a Rubik's cube


Robots with truly humanlike dexterity are far from becoming reality, but progress accelerated by AI has brought us closer to achieving this vision than ever before. In a research paper published in September, a team of scientists at Google detailed their tests with a robotic hand that enabled it to rotate Baoding balls with minimal training data. And at a computer vision conference in June, MIT researchers presented their work on an AI model capable of predicting the tactility of physical things from snippets of visual data alone. Now, OpenAI -- the San Francisco-based AI research firm cofounded by Elon Musk and others, with backing from luminaries like LinkedIn cofounder Reid Hoffman and former Y Combinator president Sam Altman -- says it's on the cusp of solving something of a grand challenge in robotics and AI systems: solving a Rubik's cube. Unlike breakthroughs achieved by teams at the University of California, Irvine and elsewhere, which leveraged machines tailor-built to manipulate Rubik's cubes with speed, the approach devised by OpenAI researchers uses a five-fingered humanoid hand guided by an AI model with 13,000 years of cumulative experience -- on the same order of magnitude as the 40,000 years used by OpenAI's Dota-playing bot.

Poker may be the latest game to fold against artificial intelligence


In a landmark achievement for artificial intelligence, a poker bot developed by researchers in Canada and the Czech Republic has defeated several professional players in one-on-one games of no-limit Texas hold'em poker. Perhaps most interestingly, the academics behind the work say their program overcame its human opponents by using an approximation approach that they compare to "gut feeling." "If correct, this is indeed a significant advance in game-playing AI," says Michael Wellman, a professor at the University of Michigan who specializes in game theory and AI. "First, it achieves a major milestone (beating poker professionals) in a game of prominent interest. Second, it brings together several novel ideas, which together support an exciting approach for imperfect-information games."

DeepMind and Google recreate former NFL linebacker Tim Shaw's voice using AI


In August, Google AI researchers working with the ALS Therapy Development Institute shared details about Project Euphonia, a speech-to-text transcription service for people with speaking impairments. They showed that, using data sets of audio from both native and non-native English speakers with neurodegenerative diseases and techniques from Parrotron, an AI tool for people with impediments, they could drastically improve the quality of speech synthesis and generation. Recently, in something of a case study, Google researchers and a team from Alphabet's DeepMind employed Euphonia in an effort to recreate the original voice of Tim Shaw, a former NFL football linebacker who played for the Carolina Panthers, Jacksonville Jaguars, Chicago Bears, and Tennessee Titans before retiring in 2013. Roughly six years ago, Shaw was diagnosed with ALS, which requires him to use a wheelchair and left him unable to speak, swallow, or breathe without assistance. Over the course of six months, the joint research team adapted a generative AI model -- WaveNet -- to the task of synthesizing speech from samples of Shaw's voice prior to his ALS diagnoses.