Machine Learning Promoting Extreme Simplification of Spectroscopy Equipment

arXiv.org Machine Learning

The spectroscopy measurement is one of main pathways for exploring and understanding the nature. Today, it seems that racing artificial intelligence will remould its styles. The algorithms contained in huge neural networks are capable of substituting many of expensive and complex components of spectrum instruments. In this work, we presented a smart machine learning strategy on the measurement of absorbance curves, and also initially verified that an exceedingly-simplified equipment is sufficient to meet the needs for this strategy. Further, with its simplicity, the setup is expected to infiltrate into many scientific areas in versatile forms.


Multispectral Transfer Network: Unsupervised Depth Estimation for All-Day Vision

AAAI Conferences

To understand the real-world, it is essential to perceive in all-day conditions including cases which are not suitable for RGB sensors, especially at night. Beyond these limitations, the innovation introduced here is a multispectral solution in the form of depth estimation from a thermal sensor without an additional depth sensor.Based on an analysis of multispectral properties and the relevance to depth predictions, we propose an efficient and novel multi-task framework called the Multispectral Transfer Network (MTN) to estimate a depth image from a single thermal image. By exploiting geometric priors and chromaticity clues, our model can generate a pixel-wise depth image in an unsupervised manner. Moreover, we propose a new type of multitask module called Interleaver as a means of incorporating the chromaticity and fine details of skip-connections into the depth estimation framework without sharing feature layers. Lastly, we explain a novel technical means of stably training and covering large disparities and extending thermal images to data-driven methods for all-day conditions. In experiments, we demonstrate the better performance and generalization of depth estimation through the proposed multispectral stereo dataset, including various driving conditions.


Computationally Efficient Target Classification in Multispectral Image Data with Deep Neural Networks

arXiv.org Artificial Intelligence

Detecting and classifying targets in video streams from surveillance cameras is a cumbersome, error-prone and expensive task. Often, the incurred costs are prohibitive for real-time monitoring. This leads to data being stored locally or transmitted to a central storage site for post-incident examination. The required communication links and archiving of the video data are still expensive and this setup excludes preemptive actions to respond to imminent threats. An effective way to overcome these limitations is to build a smart camera that transmits alerts when relevant video sequences are detected. Deep neural networks (DNNs) have come to outperform humans in visual classifications tasks. The concept of DNNs and Convolutional Networks (ConvNets) can easily be extended to make use of higher-dimensional input data such as multispectral data. We explore this opportunity in terms of achievable accuracy and required computational effort. To analyze the precision of DNNs for scene labeling in an urban surveillance scenario we have created a dataset with 8 classes obtained in a field experiment. We combine an RGB camera with a 25-channel VIS-NIR snapshot sensor to assess the potential of multispectral image data for target classification. We evaluate several new DNNs, showing that the spectral information fused together with the RGB frames can be used to improve the accuracy of the system or to achieve similar accuracy with a 3x smaller computation effort. We achieve a very high per-pixel accuracy of 99.1%. Even for scarcely occurring, but particularly interesting classes, such as cars, 75% of the pixels are labeled correctly with errors occurring only around the border of the objects. This high accuracy was obtained with a training set of only 30 labeled images, paving the way for fast adaptation to various application scenarios.


Ex-Director of OSU's Multispectral Lab Indicted for Fraud

U.S. News

Daniel Keogh is a former contract operator of university-owned OSU-Multispectral Laboratories. The indictment alleges the Keoghs made a false statement to acquire a $3.2 million loan that was 80 percent guaranteed by the U.S. Department of Agriculture.


Microtech Industry-- Le Salon Online de l'Industrie Suisse des Microtechniques

#artificialintelligence

At CSEM we have developed a snap-shot multispectral imaging technology. Our patented optics and machine learning intelligence allow us to remove unnecessary data acquisition and processing whilst maintaining accuracy.