Collaborating Authors

Using Vocabulary Knowledge in Bayesian Multinomial Estimation

Neural Information Processing Systems

Recent approaches have used uncertainty over the vocabulary of symbols in a multinomial distribution as a means of accounting for sparsity. We present a Bayesian approach that allows weak prior knowledge, in the form of a small set of approximate candidate vocabularies, to be used to dramatically improve the resulting estimates. We demonstrate these improvements in applications to text compression andestimating distributions over words in newsgroup data. 1 Introduction Sparse multinomial distributions arise in many statistical domains, including natural languageprocessing and graphical models. Consequently, a number of approaches toparameter estimation for sparse multinomial distributions have been suggested [3]. These approaches tend to be domain-independent: they make little use of prior knowledge about a specific domain.

The Bayesian New Statistics: Hypothesis Testing, Estimation, Meta-Analysis, and Power Analysis from a Bayesian Perspective


Many people have found the table above to be useful for understanding two conceptual distinctions in the practice of data analysis. The article that discusses the table, and many other issues, is now in press. The in-press version can be found at OSF and at SSRN. Abstract: In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty, on the other hand. Among frequentists in psychology a shift of emphasis from hypothesis testing to estimation has been dubbed "the New Statistics" (Cumming, 2014).

Sparse Bayesian Methods for Low-Rank Matrix Estimation Machine Learning

Recovery of low-rank matrices has recently seen significant activity in many areas of science and engineering, motivated by recent theoretical results for exact reconstruction guarantees and interesting practical applications. A number of methods have been developed for this recovery problem. However, a principled method for choosing the unknown target rank is generally not provided. In this paper, we present novel recovery algorithms for estimating low-rank matrices in matrix completion and robust principal component analysis based on sparse Bayesian learning (SBL) principles. Starting from a matrix factorization formulation and enforcing the low-rank constraint in the estimates as a sparsity constraint, we develop an approach that is very effective in determining the correct rank while providing high recovery performance. We provide connections with existing methods in other similar problems and empirical results and comparisons with current state-of-the-art methods that illustrate the effectiveness of this approach.

Bayesian Joint Estimation of Multiple Graphical Models

Neural Information Processing Systems

In this paper, we propose a novel Bayesian group regularization method based on the spike and slab Lasso priors for jointly estimating multiple graphical models. The proposed method can be used to estimate the common sparsity structure underlying the graphical models while capturing potential heterogeneity of the precision matrices corresponding to those models. Our theoretical results show that the proposed method enjoys the optimal rate of convergence in $\ell_\infty$ norm for estimation consistency and has a strong structure recovery guarantee even when the signal strengths over different graphs are heterogeneous. Through simulation studies and an application to the capital bike-sharing network data, we demonstrate the competitive performance of our method compared to existing alternatives. Papers published at the Neural Information Processing Systems Conference.

Bayesian Estimation of Latently-grouped Parameters in Undirected Graphical Models

Neural Information Processing Systems

In large-scale applications of undirected graphical models, such as social networks and biological networks, similar patterns occur frequently and give rise to similar parameters. In this situation, it is beneficial to group the parameters for more efficient learning. We show that even when the grouping is unknown, we can infer these parameter groups during learning via a Bayesian approach. We impose a Dirichlet process prior on the parameters. Simulations show that both algorithms outperform conventional maximum likelihood estimation (MLE).