Goto

Collaborating Authors

Corpus-Based Approaches to Semantic Interpretation in NLP

AI Magazine

In recent years, there has been a flurry of research into empirical, corpus-based learning approaches to natural language processing (NLP). Most empirical NLP work to date has focused on relatively low-level language processing such as part-of-speech tagging, text segmentation, and syntactic parsing. The success of these approaches has stimulated research in using empirical learning techniques in other facets of NLP, including semantic analysis -- uncovering the meaning of an utterance. This article is an introduction to some of the emerging research in the application of corpus-based learning techniques to problems in semantic interpretation. In particular, we focus on two important problems in semantic interpretation, namely, word-sense disambiguation and semantic parsing.


Modelling Creativity: Identifying Key Components through a Corpus-Based Approach

arXiv.org Artificial Intelligence

Creativity is a complex, multi-faceted concept encompassing a variety of related aspects, abilities, properties and behaviours. If we wish to study creativity scientifically, then a tractable and well-articulated model of creativity is required. Such a model would be of great value to researchers investigating the nature of creativity and in particular, those concerned with the evaluation of creative practice. This paper describes a unique approach to developing a suitable model of how creative behaviour emerges that is based on the words people use to describe the concept. Using techniques from the field of statistical natural language processing, we identify a collection of fourteen key components of creativity through an analysis of a corpus of academic papers on the topic. Words are identified which appear significantly often in connection with discussions of the concept. Using a measure of lexical similarity to help cluster these words, a number of distinct themes emerge, which collectively contribute to a comprehensive and multi-perspective model of creativity. The components provide an ontology of creativity: a set of building blocks which can be used to model creative practice in a variety of domains. The components have been employed in two case studies to evaluate the creativity of computational systems and have proven useful in articulating achievements of this work and directions for further research.


A Survey of Paraphrasing and Textual Entailment Methods

Journal of Artificial Intelligence Research

Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.


Unsupervised Phrasal Near-Synonym Generation from Text Corpora

AAAI Conferences

Unsupervised discovery of synonymous phrases is useful in a variety of tasks ranging from text mining and search engines to semantic analysis and machine translation. This paper presents an unsupervised corpus-based conditional model: Near-Synonym System (NeSS) for finding phrasal synonyms and near synonyms that requires only a large monolingual corpus. The method is based on maximizing information-theoretic combinations of shared contexts and is parallelizable for large-scale processing. An evaluation framework with crowd-sourced judgments is proposed and results are compared with alternate methods, demonstrating considerably superior results to the literature and to thesaurus look up for multi-word phrases. Moreover, the results show that the statistical scoring functions and overall scalability of the system are more important than language specific NLP tools. The method is language-independent and practically useable due to accuracy and real-time performance via parallel decomposition.


Never Forget These 8 NLP Terms

#artificialintelligence

Since NLP is a subfield of Linguistics, many key terminologies from Linguistics have been adopted in the field. The word corpus translated to Latin means body. The body constitutes the physical structure which includes bones, flesh, and organs of a person or animal, therefore we can say the body is made up of a collection of other parts. In the same way, we say a corpus is a collection of other parts, but the other parts in this respect are other documents. For example, you may have corpora (plural of corpus) made up of different religious books where each book would be referred to as a document and the collection of books is the corpus.