Collaborating Authors

AllenAct: A Framework for Embodied AI Research Artificial Intelligence

The domain of Embodied AI, in which agents learn to complete tasks through interaction with their environment from egocentric observations, has experienced substantial growth with the advent of deep reinforcement learning and increased interest from the computer vision, NLP, and robotics communities. This growth has been facilitated by the creation of a large number of simulated environments (such as AI2-THOR, Habitat and CARLA), tasks (like point navigation, instruction following, and embodied question answering), and associated leaderboards. While this diversity has been beneficial and organic, it has also fragmented the community: a huge amount of effort is required to do something as simple as taking a model trained in one environment and testing it in another. This discourages good science. We introduce AllenAct, a modular and flexible learning framework designed with a focus on the unique requirements of Embodied AI research. AllenAct provides first-class support for a growing collection of embodied environments, tasks and algorithms, provides reproductions of state-of-the-art models and includes extensive documentation, tutorials, start-up code, and pre-trained models. We hope that our framework makes Embodied AI more accessible and encourages new researchers to join this exciting area. The framework can be accessed at:

Artificial Agents Learn Flexible Visual Representations by Playing a Hiding Game Artificial Intelligence

The ubiquity of embodied gameplay, observed in a wide variety of animal species including turtles and ravens, has led researchers to question what advantages play provides to the animals engaged in it. Mounting evidence suggests that play is critical in developing the neural flexibility for creative problem solving, socialization, and can improve the plasticity of the medial prefrontal cortex. Comparatively little is known regarding the impact of gameplay upon embodied artificial agents. While recent work has produced artificial agents proficient in abstract games, the environments these agents act within are far removed the real world and thus these agents provide little insight into the advantages of embodied play. Hiding games have arisen in multiple cultures and species, and provide a rich ground for studying the impact of embodied gameplay on representation learning in the context of perspective taking, secret keeping, and false belief understanding. Here we are the first to show that embodied adversarial reinforcement learning agents playing cache, a variant of hide-and-seek, in a high fidelity, interactive, environment, learn representations of their observations encoding information such as occlusion, object permanence, free space, and containment; on par with representations learnt by the most popular modern paradigm for visual representation learning which requires large datasets independently labeled for each new task. Our representations are enhanced by intent and memory, through interaction and play, moving closer to biologically motivated learning strategies. These results serve as a model for studying how facets of vision and perspective taking develop through play, provide an experimental framework for assessing what is learned by artificial agents, and suggest that representation learning should move from static datasets and towards experiential, interactive, learning.

Emergent Tool Use from Multi-Agent Interaction


In our environment, agents play a team-based hide-and-seek game. Hiders (blue) are tasked with avoiding line-of-sight from the seekers (red), and seekers are tasked with keeping vision of the hiders. There are objects scattered throughout the environment that hiders and seekers can grab and lock in place, as well as randomly generated immovable rooms and walls that agents must learn to navigate. Before the game begins, hiders are given a preparation phase where seekers are immobilized to give hiders a chance to run away or change their environment. There are no explicit incentives for agents to interact with objects in the environment; the only supervision given is through the hide-and-seek objective.

AI2-THOR: An Interactive 3D Environment for Visual AI Artificial Intelligence

We introduce The House Of inteRactions (THOR), a framework for visual AI research, available at AI2-THOR consists of near photo-realistic 3D indoor scenes, where AI agents can navigate in the scenes and interact with objects to perform tasks. AI2-THOR enables research in many different domains including but not limited to deep reinforcement learning, imitation learning, learning by interaction, planning, visual question answering, unsupervised representation learning, object detection and segmentation, and learning models of cognition. The goal of AI2-THOR is to facilitate building visually intelligent models and push the research forward in this domain.

OpenAI Tried to Train AI Agents to Play Hide-And-Seek but Instead They Were Shocked by What They Learned


Competition is one of the socio-economic dynamics that has influenced our evolutions as species. The vast amount of complexity and diversity on Earth evolved due to co-evolution and competition between organisms, directed by natural selection. By competing against a different party, we are constantly forced to improve our knowledge and skills on a specific subject. Recent developments in artificial intelligence(AI) have started to leverage some of the principles of competition to influence learning behaviors in AI agents. Specifically, the field of multi-agent reinforcement learning(MARL) has been heavily influenced by the competitive and game-theoretic dynamics.