Goto

Collaborating Authors

t-DCF: a Detection Cost Function for the Tandem Assessment of Spoofing Countermeasures and Automatic Speaker Verification

arXiv.org Machine Learning

The ASVspoof challenge series was born to spearhead research in anti-spoofing for automatic speaker verification (ASV). The two challenge editions in 2015 and 2017 involved the assessment of spoofing countermeasures (CMs) in isolation from ASV using an equal error rate (EER) metric. While a strategic approach to assessment at the time, it has certain shortcomings. First, the CM EER is not necessarily a reliable predictor of performance when ASV and CMs are combined. Second, the EER operating point is ill-suited to user authentication applications, e.g. telephone banking, characterised by a high target user prior but a low spoofing attack prior. We aim to migrate from CM- to ASV-centric assessment with the aid of a new tandem detection cost function (t-DCF) metric. It extends the conventional DCF used in ASV research to scenarios involving spoofing attacks. The t-DCF metric has 6 parameters: (i) false alarm and miss costs for both systems, and (ii) prior probabilities of target and spoof trials (with an implied third, nontarget prior). The study is intended to serve as a self-contained, tutorial-like presentation. We analyse with the t-DCF a selection of top-performing CM submissions to the 2015 and 2017 editions of ASVspoof, with a focus on the spoofing attack prior. Whereas there is little to choose between countermeasure systems for lower priors, system rankings derived with the EER and t-DCF show differences for higher priors. We observe some ranking changes. Findings support the adoption of the DCF-based metric into the roadmap for future ASVspoof challenges, and possibly for other biometric anti-spoofing evaluations.


Are Microsoft And VocalZoom The Peanut Butter And Chocolate Of Voice Recognition?

#artificialintelligence

Moore's law has driven silicon chip circuitry to the point where we are surrounded by devices equipped with microprocessors. The devices are frequently wonderful; communicating with them – not so much. Pressing buttons on smart devices or keyboards is often clumsy and never the method of choice when effective voice communication is possible. The keyword in the previous sentence is "effective". Technology has advanced to the point where we are in the early stages of being able to communicate with our devices using voice recognition.


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Are Voice Recognition Based Payments The Next Step in FinTech Convenience? - FindBiometrics

#artificialintelligence

PayPal may be looking into voice recognition to enable more digital commerce use cases in the near future, if a new post-MWC blog post offers any hints. Looking back on last week's event -- for which we featured extensive firsthand coverage -- PayPal Head of Global Initiatives Anuj Nayar notes two dominant trends. One is the Internet of Things, including new connected car technologies like PayPal's new car commerce feature with Shell and Jaguar (and Apple). The other, as Nayar puts it, is "conversational commerce." Looking at emerging digital commerce opportunities in areas like virtual reality, connected appliances, and even drones, Nayar asserts that it "won't be convenient or realistic to pull out a credit card or punch in your information in any of these scenarios".