Goto

Collaborating Authors

Alphabet's Next Billion-Dollar Business: 10 Industries To Watch - CB Insights Research

#artificialintelligence

Alphabet is using its dominance in the search and advertising spaces -- and its massive size -- to find its next billion-dollar business. From healthcare to smart cities to banking, here are 10 industries the tech giant is targeting. With growing threats from its big tech peers Microsoft, Apple, and Amazon, Alphabet's drive to disrupt has become more urgent than ever before. The conglomerate is leveraging the power of its first moats -- search and advertising -- and its massive scale to find its next billion-dollar businesses. To protect its current profits and grow more broadly, Alphabet is edging its way into industries adjacent to the ones where it has already found success and entering new spaces entirely to find opportunities for disruption. Evidence of Alphabet's efforts is showing up in several major industries. For example, the company is using artificial intelligence to understand the causes of diseases like diabetes and cancer and how to treat them. Those learnings feed into community health projects that serve the public, and also help Alphabet's effort to build smart cities. Elsewhere, Alphabet is using its scale to build a better virtual assistant and own the consumer electronics software layer. It's also leveraging that scale to build a new kind of Google Pay-operated checking account. In this report, we examine how Alphabet and its subsidiaries are currently working to disrupt 10 major industries -- from electronics to healthcare to transportation to banking -- and what else might be on the horizon. Within the world of consumer electronics, Alphabet has already found dominance with one product: Android. Mobile operating system market share globally is controlled by the Linux-based OS that Google acquired in 2005 to fend off Microsoft and Windows Mobile. Today, however, Alphabet's consumer electronics strategy is being driven by its work in artificial intelligence. Google is building some of its own hardware under the Made by Google line -- including the Pixel smartphone, the Chromebook, and the Google Home -- but the company is doing more important work on hardware-agnostic software products like Google Assistant (which is even available on iOS).



Topic Modeling with Wasserstein Autoencoders

arXiv.org Artificial Intelligence

We propose a novel neural topic model in the Wasserstein autoencoders (W AE) framework. Unlike existing variational autoencoder based models, we directly enforce Dirichlet prior on the latent document-topic vectors. We exploit the structure of the latent space and apply a suitable kernel in minimizing the Maximum Mean Discrepancy (MMD) to perform distribution matching. We discover that MMD performs much better than the Generative Adversarial Network (GAN) in matching high dimensional Dirichlet distribution. We further discover that incorporating randomness in the encoder output during training leads to significantly more coherent topics. To measure the diversity of the produced topics, we propose a simple topic uniqueness metric. Together with the widely used coherence measure NPMI, we offer a more wholistic evaluation of topic quality. Experiments on several real datasets show that our model produces significantly better topics than existing topic models.


The 2018 Survey: AI and the Future of Humans

#artificialintelligence

"Please think forward to the year 2030. Analysts expect that people will become even more dependent on networked artificial intelligence (AI) in complex digital systems. Some say we will continue on the historic arc of augmenting our lives with mostly positive results as we widely implement these networked tools. Some say our increasing dependence on these AI and related systems is likely to lead to widespread difficulties. Our question: By 2030, do you think it is most likely that advancing AI and related technology systems will enhance human capacities and empower them? That is, most of the time, will most people be better off than they are today? Or is it most likely that advancing AI and related technology systems will lessen human autonomy and agency to such an extent that most people will not be better off than the way things are today? Please explain why you chose the answer you did and sketch out a vision of how the human-machine/AI collaboration will function in 2030.


Uber's self-driving truck delivered 50,000 cans of Budweiser

Washington Post - Technology News

If you drank a cold beer in Colorado Springs this weekend, it may have been delivered by a self-driving truck. That's where a big rig tricked out with a sophisticated system that lets a computer take control on the road delivered 50,000 cans of Budweiser last week -- in what the beer company says was the first commercial delivery using the tech. The truck that made the 120-mile journey is one of a handful of Volvo rigs equipped with tech developed by Otto, a start-up Uber acquired in August. Unlike other self-driving systems on the market, such as Tesla's autopilot, Otto's tech lets drivers get out from behind the wheel altogether. At least when it's on the highway and doesn't have to watch out for things like cyclists and pedestrians, that is.