Top 20 Deep Learning Papers, 2018 Edition

@machinelearnbot

Deep Learning, one of the subfields of Machine Learning and Statistical Learning has been advancing in impressive levels in the past years. Cloud computing, robust open source tools and vast amounts of available data have been some of the levers for these impressive breakthroughs. The criteria used to select the 20 top papers is by using citation counts from academic.microsoft.com. It is important to mention that these metrics are changing rapidly so the citations valued must be considered as the numbers when this article was published. In this list of papers more than 75% refer to deep learning and neural networks, specifically Convolutional Neural Networks (CNN).


Neurocomputing

#artificialintelligence

Neural networks (NNs) and deep learning (DL) currently provide the best solutions to many problems in image recognition, speech recognition, natural language processing, control and precision health. NN and DL make the artificial intelligence (AI) much closer to human thinking modes. However, there are many open problems related to DL in NN, e.g.: convergence, learning efficiency, optimality, multi-dimensional learning, on-line adaptation. This requires to create new algorithms and analysis methods. Practical applications both require and stimulate this development.


A History of Deep Learning - Import.io

#artificialintelligence

These days, you hear a lot about machine learning (or ML) and artificial intelligence (or AI) – both good or bad depending on your source. Many of us immediately conjure up images of HAL from 2001: A Space Odyssey, the Terminator cyborgs, C-3PO, or Samantha from Her when the subject turns to AI. And many may not even be familiar with machine learning as a separate subject. The phrases are often tossed around interchangeably, but they're not exactly the same thing. In the most general sense, machine learning has evolved from AI. In the Google Trends graph above, you can see that AI was the more popular search term until machine learning passed it for good around September 2015.


Deep Learning Neural Networks Simplified

#artificialintelligence

Deep learning is not as complex a concept that non-science people often happen to decipher. Scientific evolution over the years have reached a stage where a lot of explorations and defined research work needs the assistance of artificial intelligence. Since machines are usually fed with a particular set of algorithms to understand and react to various tasks within a matter of seconds, working with them broadens the scope of scientific breakthroughs resulting in the invention of techniques and procedures that make human life simpler and enriching. However, in order to work with machines, it is important for them to understand and recognize things just the way the human brain does. For example, we may recognize an apple through its shape and colour.


Advanced Topics in Deep Convolutional Neural Networks

#artificialintelligence

Throughout this article, I will discuss some of the more complex aspects of convolutional neural networks and how they related to specific tasks such as object detection and facial recognition. This article is a natural extension to my article titled: Simple Introductions to Neural Networks. I recommend looking at this before tackling the rest of this article if you are not well-versed in the idea and function of convolutional neural networks. Due to the excessive length of the original article, I have decided to leave out several topics related to object detection and facial recognition systems, as well as some of the more esoteric network architectures and practices currently being trialed in the research literature. I will likely discuss these in a future article related more specifically to the application of deep learning for computer vision.