Intelligent Systems for Geosciences

Communications of the ACM

Many aspects of geosciences pose novel problems for intelligent systems research. Geoscience data is challenging because it tends to be uncertain, intermittent, sparse, multiresolution, and multi-scale. Geosciences processes and objects often have amorphous spatiotemporal boundaries. The lack of ground truth makes model evaluation, testing, and comparison difficult. Overcoming these challenges requires breakthroughs that would significantly transform intelligent systems, while greatly benefitting the geosciences in turn.


Three Steps to Successful Collaboration with Data Scientists - Eos

@machinelearnbot

The vast and rapidly increasing supply of new data in the Earth sciences creates many opportunities to gain scientific insights and to answer important questions. Data analysis has always been an integral component of research and education in the Earth sciences, but mainstream Earth scientists may not yet be fully aware of many recently developed methods in computer science, statistics, and math. The fastest way to put these new methods of data analysis to use in the Earth sciences is for Earth scientists and data scientists to collaborate. However, those collaborations can be difficult to initiate and even more difficult to maintain and to guide to successful outcomes. Here we break down the collaboration process into steps and provide some guidelines that we have found useful for efficient collaboration between Earth scientists and data scientists.


Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data

arXiv.org Artificial Intelligence

Data science models, although successful in a number of commercial domains, have had limited applicability in scientific problems involving complex physical phenomena. Theory-guided data science (TGDS) is an emerging paradigm that aims to leverage the wealth of scientific knowledge for improving the effectiveness of data science models in enabling scientific discovery. The overarching vision of TGDS is to introduce scientific consistency as an essential component for learning generalizable models. Further, by producing scientifically interpretable models, TGDS aims to advance our scientific understanding by discovering novel domain insights. Indeed, the paradigm of TGDS has started to gain prominence in a number of scientific disciplines such as turbulence modeling, material discovery, quantum chemistry, bio-medical science, bio-marker discovery, climate science, and hydrology. In this paper, we formally conceptualize the paradigm of TGDS and present a taxonomy of research themes in TGDS. We describe several approaches for integrating domain knowledge in different research themes using illustrative examples from different disciplines. We also highlight some of the promising avenues of novel research for realizing the full potential of theory-guided data science.


Computational Sustainability

Communications of the ACM

These are exciting times for computational sciences with the digital revolution permeating a variety of areas and radically transforming business, science, and our daily lives. The Internet and the World Wide Web, GPS, satellite communications, remote sensing, and smartphones are dramatically accelerating the pace of discovery, engendering globally connected networks of people and devices. The rise of practically relevant artificial intelligence (AI) is also playing an increasing part in this revolution, fostering e-commerce, social networks, personalized medicine, IBM Watson and AlphaGo, self-driving cars, and other groundbreaking transformations. Unfortunately, humanity is also facing tremendous challenges. Nearly a billion people still live below the international poverty line and human activities and climate change are threatening our planet and the livelihood of current and future generations. Moreover, the impact of computing and information technology has been uneven, mainly benefiting profitable sectors, with fewer societal and environmental benefits, further exacerbating inequalities and the destruction of our planet. Our vision is that computer scientists can and should play a key role in helping address societal and environmental challenges in pursuit of a sustainable future, while also advancing computer science as a discipline. For over a decade, we have been deeply engaged in computational research to address societal and environmental challenges, while nurturing the new field of Computational Sustainability.


Machine Learning for Stochastic Parameterization: Generative Adversarial Networks in the Lorenz '96 Model

arXiv.org Machine Learning

Stochastic parameterizations account for uncertainty in the representation of unresolved sub-grid processes by sampling from the distribution of possible sub-grid forcings. Some existing stochastic parameterizations utilize data-driven approaches to characterize uncertainty, but these approaches require significant structural assumptions that can limit their scalability. Machine learning models, including neural networks, are able to represent a wide range of distributions and build optimized mappings between a large number of inputs and sub-grid forcings. Recent research on machine learning parameterizations has focused only on deterministic parameterizations. In this study, we develop a stochastic parameterization using the generative adversarial network (GAN) machine learning framework. The GAN stochastic parameterization is trained and evaluated on output from the Lorenz '96 model, which is a common baseline model for evaluating both parameterization and data assimilation techniques. We evaluate different ways of characterizing the input noise for the model and perform model runs with the GAN parameterization at weather and climate timescales. Some of the GAN configurations perform better than a baseline bespoke parameterization at both timescales, and the networks closely reproduce the spatio-temporal correlations and regimes of the Lorenz '96 system. We also find that in general those models which produce skillful forecasts are also associated with the best climate simulations.