Goto

Collaborating Authors

Online security 101: How to protect your privacy from hackers, spies, and the government

ZDNet

"I have nothing to hide" was once the standard response to the occasional surveillance experience by way of cameras, border checks, or casual questioning by law enforcement. Everything you need to know about ransomware: how it started, why it's booming, how to protect against it, and what to do if your PC is infected. Privacy used to be considered generally balanced in many countries -- at least, in the West -- with a few changes to rules and regulations here and there often made only in the name of the common good. Things have changed, and not for the better. China's Great Firewall, the UK's Snooper's Charter, the US' mass surveillance and bulk data collection -- compliments of the National Security Agency (NSA) and Edward Snowden's whistleblowing -- Russia's insidious election meddling, and countless censorship and communication blackout schemes across the Middle East are all contributing to a global surveillance state in which privacy is a luxury of the few and not a right of the many. As surveillance becomes a common element of our daily lives, privacy is in danger of no longer being considered an intrinsic right. Everything from our web browsing to mobile devices and the Internet of Things (IoT) products installed in our homes have the potential to erode our privacy and personal security, and you cannot depend on vendors or ever-changing surveillance rules to keep them intact. Having "nothing to hide" doesn't cut it anymore. We must all do whatever we can to safeguard our personal privacy. Taking the steps outlined below can not only give you some sanctuary from spreading surveillance tactics but also help keep you safe from cyberattackers. Data is a vague concept and can encompass such a wide range of information that it is worth briefly breaking down different collections before examining how each area is relevant to your privacy and security. Known as PII, this can include your name, physical home address, email address, telephone numbers, date of birth, marital status, Social Security numbers (US)/National Insurance numbers (UK), and other information relating to your medical status, family members, employment, and education. All this data, whether lost in different data breaches or stolen piecemeal through phishing campaigns, can provide attackers with enough information to conduct identity theft, take out loans using your name, and potentially compromise online accounts that rely on security questions being answered correctly.



Cyber-All-Intel: An AI for Security related Threat Intelligence

arXiv.org Artificial Intelligence

Keeping up with threat intelligence is a must for a security analyst today. There is a volume of information present in `the wild' that affects an organization. We need to develop an artificial intelligence system that scours the intelligence sources, to keep the analyst updated about various threats that pose a risk to her organization. A security analyst who is better `tapped in' can be more effective. In this paper we present, Cyber-All-Intel an artificial intelligence system to aid a security analyst. It is a system for knowledge extraction, representation and analytics in an end-to-end pipeline grounded in the cybersecurity informatics domain. It uses multiple knowledge representations like, vector spaces and knowledge graphs in a 'VKG structure' to store incoming intelligence. The system also uses neural network models to pro-actively improve its knowledge. We have also created a query engine and an alert system that can be used by an analyst to find actionable cybersecurity insights.



Machine Learning in IoT Security: Current Solutions and Future Challenges

arXiv.org Machine Learning

The future Internet of Things (IoT) will have a deep economical, commercial and social impact on our lives. The participating nodes in IoT networks are usually resource-constrained, which makes them luring targets for cyber attacks. In this regard, extensive efforts have been made to address the security and privacy issues in IoT networks primarily through traditional cryptographic approaches. However, the unique characteristics of IoT nodes render the existing solutions insufficient to encompass the entire security spectrum of the IoT networks. This is, at least in part, because of the resource constraints, heterogeneity, massive real-time data generated by the IoT devices, and the extensively dynamic behavior of the networks. Therefore, Machine Learning (ML) and Deep Learning (DL) techniques, which are able to provide embedded intelligence in the IoT devices and networks, are leveraged to cope with different security problems. In this paper, we systematically review the security requirements, attack vectors, and the current security solutions for the IoT networks. We then shed light on the gaps in these security solutions that call for ML and DL approaches. We also discuss in detail the existing ML and DL solutions for addressing different security problems in IoT networks. At last, based on the detailed investigation of the existing solutions in the literature, we discuss the future research directions for ML- and DL-based IoT security.