Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes

Neural Information Processing Systems

Predicated on the increasing abundance of electronic health records, we investigate the problem of inferring individualized treatment effects using observational data. Stemming from the potential outcomes model, we propose a novel multi-task learning framework in which factual and counterfactual outcomes are modeled as the outputs of a function in a vector-valued reproducing kernel Hilbert space (vvRKHS). We develop a nonparametric Bayesian method for learning the treatment effects using a multi-task Gaussian process (GP) with a linear coregionalization kernel as a prior over the vvRKHS. The Bayesian approach allows us to compute individualized measures of confidence in our estimates via pointwise credible intervals, which are crucial for realizing the full potential of precision medicine. The impact of selection bias is alleviated via a risk-based empirical Bayes method for adapting the multi-task GP prior, which jointly minimizes the empirical error in factual outcomes and the uncertainty in (unobserved) counterfactual outcomes. We conduct experiments on observational datasets for an interventional social program applied to premature infants, and a left ventricular assist device applied to cardiac patients wait-listed for a heart transplant. In both experiments, we show that our method significantly outperforms the state-of-the-art.


IBM Watson aligns with 16 health systems and imaging firms to apply cognitive computing to battle cancer, diabetes, heart disease

#artificialintelligence

IBM Watson Health has formed a medical imaging collaborative with more than 15 leading healthcare organizations. The goal: To take on some of the most deadly diseases. The collaborative, which includes health systems, academic medical centers, ambulatory radiology providers and imaging technology companies, aims to help doctors address breast, lung, and other cancers; diabetes; eye health; brain disease; and heart disease and related conditions, such as stroke. Watson will mine insights from what IBM calls previously invisible unstructured imaging data and combine it with a broad variety of data from other sources, such as data from electronic health records, radiology and pathology reports, lab results, doctors' progress notes, medical journals, clinical care guidelines and published outcomes studies. As the work of the collaborative evolves, Watson's rationale and insights will evolve, informed by the latest combined thinking of the participating organizations.


Google given access to healthcare data of up to 1.6 million patients

#artificialintelligence

A company owned by Google has been given access to the healthcare data of up to 1.6 million patients from three hospitals run by a major London NHS Trust. DeepMind, the tech giant's London-based company most famous for its innovative use of artificial intelligence, is being provided with the patient information as part of an agreement with the Royal Free NHS trust, which runs the Barnet, Chase Farm and Royal Free hospitals. It includes information about people who are HIV-positive as well as details of drug overdoses, abortions and patient data from the last five years, according to a report by the New Scientist. DeepMind announced in February that it was developing a software in partnership with NHS hospitals to alert staff to patients at risk of deterioration and death through kidney failure. The technology, which is run through a smartphone app, has the support of Lord Darzi, a surgeon and former health minister who is director of the Institute of Global Health Innovation at Imperial College London.


Causal Inference through a Witness Protection Program

arXiv.org Machine Learning

One of the most fundamental problems in causal inference is the estimation of a causal effect when variables are confounded. This is difficult in an observational study, because one has no direct evidence that all confounders have been adjusted for. We introduce a novel approach for estimating causal effects that exploits observational conditional independencies to suggest "weak" paths in a unknown causal graph. The widely used faithfulness condition of Spirtes et al. is relaxed to allow for varying degrees of "path cancellations" that imply conditional independencies but do not rule out the existence of confounding causal paths. The outcome is a posterior distribution over bounds on the average causal effect via a linear programming approach and Bayesian inference. We claim this approach should be used in regular practice along with other default tools in observational studies.


A Bayesian Finite Mixture Model with Variable Selection for Data with Mixed-type Variables

arXiv.org Machine Learning

Finite mixture model is an important branch of clustering methods and can be applied on data sets with mixed types of variables. However, challenges exist in its applications. First, it typically relies on the EM algorithm which could be sensitive to the choice of initial values. Second, biomarkers subject to limits of detection (LOD) are common to encounter in clinical data, which brings censored variables into finite mixture model. Additionally, researchers are recently getting more interest in variable importance due to the increasing number of variables that become available for clustering. To address these challenges, we propose a Bayesian finite mixture model to simultaneously conduct variable selection, account for biomarker LOD and obtain clustering results. We took a Bayesian approach to obtain parameter estimates and the cluster membership to bypass the limitation of the EM algorithm. To account for LOD, we added one more step in Gibbs sampling to iteratively fill in biomarker values below or above LODs. In addition, we put a spike-and-slab type of prior on each variable to obtain variable importance. Simulations across various scenarios were conducted to examine the performance of this method. Real data application on electronic health records was also conducted.