Goto

Collaborating Authors

Imposing Regulation on Advanced Algorithms

arXiv.org Artificial Intelligence

This book discusses the necessity and perhaps urgency for the regulation of algorithms on which new technologies rely; technologies that have the potential to re-shape human societies. From commerce and farming to medical care and education, it is difficult to find any aspect of our lives that will not be affected by these emerging technologies. At the same time, artificial intelligence, deep learning, machine learning, cognitive computing, blockchain, virtual reality and augmented reality, belong to the fields most likely to affect law and, in particular, administrative law. The book examines universally applicable patterns in administrative decisions and judicial rulings. First, similarities and divergence in behavior among the different cases are identified by analyzing parameters ranging from geographical location and administrative decisions to judicial reasoning and legal basis. As it turns out, in several of the cases presented, sources of general law, such as competition or labor law, are invoked as a legal basis, due to the lack of current specialized legislation. This book also investigates the role and significance of national and indeed supranational regulatory bodies for advanced algorithms and considers ENISA, an EU agency that focuses on network and information security, as an interesting candidate for a European regulator of advanced algorithms. Lastly, it discusses the involvement of representative institutions in algorithmic regulation.


GPT-3 Creative Fiction

#artificialintelligence

What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.


Artificial intelligence in space

arXiv.org Artificial Intelligence

In the next coming years, space activities are expected to undergo a radical transformation with the emergence of new satellite systems or new services which will incorporate the contributions of artificial intelligence and machine learning defined as covering a wide range of innovations from autonomous objects with their own decision-making power to increasingly sophisticated services exploiting very large volumes of information from space. This chapter identifies some of the legal and ethical challenges linked to its use. These legal and ethical challenges call for solutions which the international treaties in force are not sufficient to determine and implement. For this reason, a legal methodology must be developed that makes it possible to link intelligent systems and services to a system of rules applicable thereto. It discusses existing legal AI-based tools amenable for making space law actionable, interoperable and machine readable for future compliance tools.


Understanding artificial intelligence ethics and safety

arXiv.org Artificial Intelligence

A remarkable time of human promise has been ushered in by the convergence of the ever-expanding availability of big data, the soaring speed and stretch of cloud computing platforms, and the advancement of increasingly sophisticated machine learning algorithms. Innovations in AI are already leaving a mark on government by improving the provision of essential social goods and services from healthcare, education, and transportation to food supply, energy, and environmental management. These bounties are likely just the start. The prospect that progress in AI will help government to confront some of its most urgent challenges is exciting, but legitimate worries abound. As with any new and rapidly evolving technology, a steep learning curve means that mistakes and miscalculations will be made and that both unanticipated and harmful impacts will occur. This guide, written for department and delivery leads in the UK public sector and adopted by the British Government in its publication, 'Using AI in the Public Sector,' identifies the potential harms caused by AI systems and proposes concrete, operationalisable measures to counteract them. It stresses that public sector organisations can anticipate and prevent these potential harms by stewarding a culture of responsible innovation and by putting in place governance processes that support the design and implementation of ethical, fair, and safe AI systems. It also highlights the need for algorithmically supported outcomes to be interpretable by their users and made understandable to decision subjects in clear, non-technical, and accessible ways. Finally, it builds out a vision of human-centred and context-sensitive implementation that gives a central role to communication, evidence-based reasoning, situational awareness, and moral justifiability.


Abolish the #TechToPrisonPipeline

#artificialintelligence

The authors of the Harrisburg University study make explicit their desire to provide "a significant advantage for law enforcement agencies and other intelligence agencies to prevent crime" as a co-author and former NYPD police officer outlined in the original press release.[38] At a time when the legitimacy of the carceral state, and policing in particular, is being challenged on fundamental grounds in the United States, there is high demand in law enforcement for research of this nature, research which erases historical violence and manufactures fear through the so-called prediction of criminality. Publishers and funding agencies serve a crucial role in feeding this ravenous maw by providing platforms and incentives for such research. The circulation of this work by a major publisher like Springer would represent a significant step towards the legitimation and application of repeatedly debunked, socially harmful research in the real world. To reiterate our demands, the review committee must publicly rescind the offer for publication of this specific study, along with an explanation of the criteria used to evaluate it. Springer must issue a statement condemning the use of criminal justice statistics to predict criminality and acknowledging their role in incentivizing such harmful scholarship in the past. Finally, all publishers must refrain from publishing similar studies in the future.