Scientists Use Machine Learning to Find Source of Salmonella

#artificialintelligence

Scientists at the University of Georgia Center for Food Safety has developed a new approach to identify the animal source of some types of Salmonella outbreaks. The researchers have developed a machine learning approach. The study is published in the January 2019 issue of Emerging Infectious Diseases. Researchers Xiangyu Deng and Shaokang Zhang, along with a team of colleagues, used more than a thousand genomes to predict the animal sources of Salmonella Typhimurium. The project used experts from the Centers for Disease Control and Prevention, the Food & Drug Administration, the Minnesota Department of Health, and the Translational Genomics Research Institute.


An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation

#artificialintelligence

Typhimurium) and other non-typhoidal Salmonella are common causes of gastrointestinal infections in people living in industrialized countries. However, in sub-Saharan Africa (SSA), invasive non-typhoidal Salmonella (iNTS) bloodstream infections are common1,2 totalling 3.4 million cases annually, with S. Typhimurium being responsible for approximately two-thirds of these cases. The fatality rate in iNTS can be extremely high3. In SSA, iNTS patients often do not suffer from diarrhoea but instead display symptoms of fever and septicaemia4. There has been no proven zoonotic source of ST313 infections, and human to human transmission has been postulated5,6.


Machine learning flags emerging pathogens: A new machine learning tool could flag dangerous bacteria before they cause an outbreak, from hospital wards to a global scale

#artificialintelligence

Reported today (8 May) in PLOS Genetics, the machine learning tool could be useful for flagging dangerous bacteria before they cause an outbreak, from hospital wards to a global scale. As the cost of genomic sequencing falls, scientists around the world are using genetics to better understand the bacteria causing infections, how diseases spread, how bacteria gain resistance to drugs, and which strains of bacteria may cause outbreaks. However, current methods to identify the genetic adaptations in emerging strains of bacteria behind an outbreak are time-consuming and often involve manually comparing the new strain to an older reference collection. The group of bacteria known as Salmonella includes many different types that vary in the severity of the disease they cause. Some types cause food poisoning, known as gastrointestinal Salmonella, whereas others cause severe disease by spreading beyond the gut, for example Salmonella Typhi which causes typhoid fever.


A new machine learning tool could flag dangerous bacteria before they cause an outbreak

#artificialintelligence

A new machine learning tool that can detect whether emerging strains of the bacterium, Salmonella are more likely to cause dangerous bloodstream infections rather than food poisoning has been developed. The tool, created by a scientist at the Wellcome Sanger Institute and her collaborators at the University of Otago, New Zealand and the Helmholtz Institute for RNA-based Infection Research, a site of the Helmholtz Centre for Infection Research, Germany, greatly speeds up the process for identifying the genetic changes underlying new invasive types of Salmonella that are of public health concern. Reported today (8 May) in PLOS Genetics, the machine learning tool could be useful for flagging dangerous bacteria before they cause an outbreak, from hospital wards to a global scale. As the cost of genomic sequencing falls, scientists around the world are using genetics to better understand the bacteria causing infections, how diseases spread, how bacteria gain resistance to drugs, and which strains of bacteria may cause outbreaks. However, current methods to identify the genetic adaptations in emerging strains of bacteria behind an outbreak are time-consuming and often involve manually comparing the new strain to an older reference collection.


Machine Learning Flags Emerging Pathogens

#artificialintelligence

A new machine learning tool that can detect whether emerging strains of the bacterium, Salmonella are more likely to cause dangerous bloodstream infections rather than food poisoning has been developed. The tool, created by a scientist at the Wellcome Sanger Institute and her collaborators at the University of Otago, New Zealand and the Helmholtz Institute for RNA-based Infection Research, a site of the Helmholtz Centre for Infection Research, Germany, greatly speeds up the process for identifying the genetic changes underlying new invasive types of Salmonella that are of public health concern. Reported today (8 May) in PLOS Genetics, the machine learning tool could be useful for flagging dangerous bacteria before they cause an outbreak, from hospital wards to a global scale. As the cost of genomic sequencing falls, scientists around the world are using genetics to better understand the bacteria causing infections, how diseases spread, how bacteria gain resistance to drugs, and which strains of bacteria may cause outbreaks. However, current methods to identify the genetic adaptations in emerging strains of bacteria behind an outbreak are time-consuming and often involve manually comparing the new strain to an older reference collection.