Collaborating Authors

Learning Optimal Bayesian Networks: A Shortest Path Perspective

Journal of Artificial Intelligence Research

In this paper, learning a Bayesian network structure that optimizes a scoring function for a given dataset is viewed as a shortest path problem in an implicit state-space search graph. This perspective highlights the importance of two research issues: the development of search strategies for solving the shortest path problem, and the design of heuristic functions for guiding the search. This paper introduces several techniques for addressing the issues. One is an A* search algorithm that learns an optimal Bayesian network structure by only searching the most promising part of the solution space. The others are mainly two heuristic functions. The first heuristic function represents a simple relaxation of the acyclicity constraint of a Bayesian network. Although admissible and consistent, the heuristic may introduce too much relaxation and result in a loose bound. The second heuristic function reduces the amount of relaxation by avoiding directed cycles within some groups of variables. Empirical results show that these methods constitute a promising approach to learning optimal Bayesian network structures.

Tractable Bayesian Network Structure Learning with Bounded Vertex Cover Number

Neural Information Processing Systems

Both learning and inference tasks on Bayesian networks are NP-hard in general. Bounded tree-width Bayesian networks have recently received a lot of attention as a way to circumvent this complexity issue; however, while inference on bounded tree-width networks is tractable, the learning problem remains NP-hard even for tree-width 2. In this paper, we propose bounded vertex cover number Bayesian networks as an alternative to bounded tree-width networks. In particular, we show that both inference and learning can be done in polynomial time for any fixed vertex cover number bound $k$, in contrast to the general and bounded tree-width cases; on the other hand, we also show that learning problem is W[1]-hard in parameter $k$. Furthermore, we give an alternative way to learn bounded vertex cover number Bayesian networks using integer linear programming (ILP), and show this is feasible in practice. Papers published at the Neural Information Processing Systems Conference.

Generative Adversarial Networks (GANs) & Bayesian Networks


Generative Adversarial Networks (GANs) software is software for producing forgeries and imitations of data (aka synthetic data, fake data). Human beings have been making fakes, with good or evil intent, of almost everything they possibly can, since the beginning of the human race. Thus, perhaps not too surprisingly, GAN software has been widely used since it was first proposed in this amazingly recent 2014 paper. To gauge how widely GAN software has been used so far, see, for example, this 2019 article entitled "18 Impressive Applications of Generative Adversarial Networks (GANs)" Sounds (voices, music,...), Images (realistic pictures, paintings, drawings, handwriting, ...), Text,etc. The forgeries can be tweaked so that they range from being very similar to the originals, to being whimsical exaggerations thereof.

Inference in Bayesian Networks

AI Magazine

A Bayesian network is a compact, expressive representation of uncertain relationships among parameters in a domain. In this article, I introduce basic methods for computing with Bayesian networks, starting with the simple idea of summing the probabilities of events of interest. The article introduces major current methods for exact computation, briefly surveys approximation methods, and closes with a brief discussion of open issues.

Cutset Sampling for Bayesian Networks

Journal of Artificial Intelligence Research

The paper presents a new sampling methodology for Bayesian networks that samples only a subset of variables and applies exact inference to the rest. Cutset sampling is a network structure-exploiting application of the Rao-Blackwellisation principle to sampling in Bayesian networks. It improves convergence by exploiting memory-based inference algorithms. It can also be viewed as an anytime approximation of the exact cutset-conditioning algorithm developed by Pearl. Cutset sampling can be implemented efficiently when the sampled variables constitute a loop-cutset of the Bayesian network and, more generally, when the induced width of the network's graph conditioned on the observed sampled variables is bounded by a constant w. We demonstrate empirically the benefit of this scheme on a range of benchmarks.