Designing Quality into Expert Systems: A Case Study in Automated Insurance Underwriting

AAAI Conferences

It can be difficult to design and develop artificial intelligence systems to meet specific quality standards. Often, AI systems are designed to be "as good as possible" rather than meeting particular targets. Using the Design for Six Sigma quality methodology, an automated insurance underwriting expert system was designed, developed, and fielded. Using this methodology resulted in meeting the high quality expectations required for deployment.


Synechron launches AI data science accelerators for FS firms

#artificialintelligence

These four new solution accelerators help financial services and insurance firms solve complex business challenges by discovering meaningful relationships between events that impact one another (correlation) and cause a future event to happen (causation). Following the success of Synechron's AI Automation Program – Neo, Synechron's AI Data Science experts have developed a powerful set of accelerators that allow financial firms to address business challenges related to investment research generation, predicting the next best action to take with a wealth management client, high-priority customer complaints, and better predicting credit risk related to mortgage lending. The Accelerators combine Natural Language Processing (NLP), Deep Learning algorithms and Data Science to solve the complex business challenges and rely on a powerful Spark and Hadoop platform to ingest and run correlations across massive amounts of data to test hypotheses and predict future outcomes. The Data Science Accelerators are the fifth Accelerator program Synechron has launched in the last two years through its Financial Innovation Labs (FinLabs), which are operating in 11 key global financial markets across North America, Europe, Middle East and APAC; including: New York, Charlotte, Fort Lauderdale, London, Paris, Amsterdam, Serbia, Dubai, Pune, Bangalore and Hyderabad. With this, Synechron's Global Accelerator programs now includes over 50 Accelerators for: Blockchain, AI Automation, InsurTech, RegTech, and AI Data Science and a dedicated team of over 300 employees globally.


Custom DU: A Web-Based Business User-Driven Automated Underwriting System

AI Magazine

Custom DU is an automated underwriting system that enables mortgage lenders to build their own business rules that facilitate assessing borrower eligibility for different mortgage products. By means of the user interface, lenders can also customize their underwriting findings reports, test the rules that they have defined, and publish changes to business rules on a real-time basis, all without any software modifications. The user interface enforces structure and consistency, enabling business users to focus on their underwriting guidelines when converting their business policy to rules. Using Custom DU, lenders can create different rule sets for their products and assign them to different channels of the business, allowing for centralized control of underwriting policies and procedures--even if lenders have decentralized operations.


Russia Inaugurates Blockchain for Mortgage Loans

#artificialintelligence

The Russian subsidiary of the Austrian lender Raiffeisenbank has run the country's first ever mortgage deal on blockchain. It could be a taste of more to come in the nation. In the transaction, a mortgage contract was issued as an xml document containing all relevant information, including data on the mortgage loan issuer, the borrower, date and place of signing the deal, the total amount of the loan, and the repayment period. The use of blockchain for mortgage loan issuance is set to increase the safety of data storage, cut depository costs, and speed up transactions for both borrower and lender, Raiffeisenbank said in announcing the deal. Normally, after sealing a mortgage deal, the borrower has to visit the bank again to deposit the mortgage contract, while the application of blockchain allows the borrower to do it remotely, also cutting the amount of paper documents.


How artificial intelligence could replace credit scores and reshape how we get loans

#artificialintelligence

You may not think the number of words in an email subject line says anything about you, but at least one company is betting that the metric can help determine your likelihood of paying back a loan. LenddoEFL, based in Singapore, is one of a handful of startups using alternative data points for credit scoring. Those companies review behavioral traits and smartphone habits to build models of creditworthiness for consumers in emerging markets, where standard credit reporting barely exists. In addition to analyzing financial-transaction data, Lenddo's algorithm takes into consideration things such as whether you avoid one-word subject lines (meaning you care about details) and regularly use financial apps on your smartphone (meaning you take your finances seriously). Lenddo also looks at the ratio of smartphone photos in your library that were taken with a front-facing camera, since selfies indicate youth, helping the company divide people into customer segments.