Mastering Data Analysis in Excel Coursera

@machinelearnbot

About this course: Important: The focus of this course is on math - specifically, data-analysis concepts and methods - not on Excel for its own sake. We use Excel to do our calculations, and all math formulas are given as Excel Spreadsheets, but we do not attempt to cover Excel Macros, Visual Basic, Pivot Tables, or other intermediate-to-advanced Excel functionality. This course will prepare you to design and implement realistic predictive models based on data. In the Final Project (module 6) you will assume the role of a business data analyst for a bank, and develop two different predictive models to determine which applicants for credit cards should be accepted and which rejected. Your first model will focus on minimizing default risk, and your second on maximizing bank profits.


Customer Analytics Coursera

@machinelearnbot

About this course: Data about our browsing and buying patterns are everywhere. From credit card transactions and online shopping carts, to customer loyalty programs and user-generated ratings/reviews, there is a staggering amount of data that can be used to describe our past buying behaviors, predict future ones, and prescribe new ways to influence future purchasing decisions. In this course, four of Wharton's top marketing professors will provide an overview of key areas of customer analytics: descriptive analytics, predictive analytics, prescriptive analytics, and their application to real-world business practices including Amazon, Google, and Starbucks to name a few. This course provides an overview of the field of analytics so that you can make informed business decisions. It is an introduction to the theory of customer analytics, and is not intended to prepare learners to perform customer analytics.


Advanced Business Analytics Capstone Coursera

@machinelearnbot

About this course: The analytics process is a collection of interrelated activities that lead to better decisions and to a higher business performance. The capstone of this specialization is designed with the goal of allowing you to experience this process. The capstone project will take you from data to analysis and models, and ultimately to presentation of insights. In this capstone project, you will analyze the data on financial loans to help with the investment decisions of an investment company. You will go through all typical steps of a data analytics project, including data understanding and cleanup, data analysis, and presentation of analytical results.


Case Studies in Data Mining with R Udemy

@machinelearnbot

Case Studies in Data Mining was originally taught as three separate online data mining courses. We examine three case studies which together present a broad-based tour of the basic and extended tasks of data mining in three different domains: (1) predicting algae blooms; (2) detecting fraudulent sales transactions; and (3) predicting stock market returns. Everything that you see on-screen is included with the course: all of the R scripts; all of the data files and R objects used and/or referenced; as well as all of the R packages' documentation. You can be new to R software and/or to data mining and be successful in completing the course. The first case study, Predicting Algae Blooms, provides instruction regarding the many useful, unique data mining functions contained in the R software'DMwR' package.


Become a Python Data Analyst Udemy

#artificialintelligence

The Python programming language has become a major player in the world of Data Science and Analytics. This course introduces Python's most important tools and libraries for doing Data Science; they are known in the community as "Python's Data Science Stack". This is a practical course where the viewer will learn through real-world examples how to use the most popular tools for doing Data Science and Analytics with Python. Alvaro Fuentes is a Data Scientist with an M.S. in Quantitative Economics and a M.S. in Applied Mathematics with more than 10 years of experience in analytical roles. He worked in the Central Bank of Guatemala as an Economic Analyst, building models for economic and financial data.