Automatic Configuration of Deep Neural Networks with EGO

arXiv.org Machine Learning

Designing the architecture for an artificial neural network is a cumbersome task because of the numerous parameters to configure, including activation functions, layer types, and hyper-parameters. With the large number of parameters for most networks nowadays, it is intractable to find a good configuration for a given task by hand. In this paper an Efficient Global Optimization (EGO) algorithm is adapted to automatically optimize and configure convolutional neural network architectures. A configurable neural network architecture based solely on convolutional layers is proposed for the optimization. Without using any knowledge on the target problem and not using any data augmentation techniques, it is shown that on several image classification tasks this approach is able to find competitive network architectures in terms of prediction accuracy, compared to the best hand-crafted ones in literature. In addition, a very small training budget (200 evaluations and 10 epochs in training) is spent on each optimized architectures in contrast to the usual long training time of hand-crafted networks. Moreover, instead of the standard sequential evaluation in EGO, several candidate architectures are proposed and evaluated in parallel, which saves the execution overheads significantly and leads to an efficient automation for deep neural network design.


Taking Human out of Learning Applications: A Survey on Automated Machine Learning

arXiv.org Artificial Intelligence

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursuit good learning performance, human experts are heavily engaged in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automatic machine learning~(AutoML) has emerged as a hot topic of both in industry and academy. In this paper, we provide a survey on existing AutoML works. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers almost all existing approaches but also guides the design for new methods. Afterward, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future researches.


Automated Machine Learning: State-of-The-Art and Open Challenges

arXiv.org Machine Learning

With the continuous and vast increase in the amount of data in our digital world, it has been acknowledged that the number of knowledgeable data scientists can not scale to address these challenges. Thus, there was a crucial need for automating the process of building good machine learning models. In the last few years, several techniques and frameworks have been introduced to tackle the challenge of automating the process of Combined Algorithm Selection and Hyper-parameter tuning (CASH) in the machine learning domain. The main aim of these techniques is to reduce the role of the human in the loop and fill the gap for non-expert machine learning users by playing the role of the domain expert. In this paper, we present a comprehensive survey for the state-of-the-art efforts in tackling the CASH problem. In addition, we highlight the research work of automating the other steps of the full complex machine learning pipeline (AutoML) from data understanding till model deployment. Furthermore, we provide comprehensive coverage for the various tools and frameworks that have been introduced in this domain. Finally, we discuss some of the research directions and open challenges that need to be addressed in order to achieve the vision and goals of the AutoML process.


Finding Competitive Network Architectures Within a Day Using UCT

arXiv.org Machine Learning

The design of neural network architectures for a new data set is a laborious task which requires human deep learning expertise. In order to make deep learning available for a broader audience, automated methods for finding a neural network architecture are vital. Recently proposed methods can already achieve human expert level performances. However, these methods have run times of months or even years of GPU computing time, ignoring hardware constraints as faced by many researchers and companies. We propose the use of Monte Carlo planning in combination with two different UCT (upper confidence bound applied to trees) derivations to search for network architectures. We adapt the UCT algorithm to the needs of network architecture search by proposing two ways of sharing information between different branches of the search tree. In an empirical study we are able to demonstrate that this method is able to find competitive networks for MNIST, SVHN and CIFAR-10 in just a single GPU day. Extending the search time to five GPU days, we are able to outperform human architectures and our competitors which consider the same types of layers.


DeepMind's PathNet: A Modular Deep Learning Architecture for AGI – Intuition Machine

#artificialintelligence

Unlike more traditional monolithic DL networks, PathNet reuses a network that consists of many neural networks and trains them to perform multiple tasks. In the authors experiments, they have shown that a network trained on a second task learns faster than if the network was trained from scratch. This indicates that transfer learning (or knowledge reuse) can be leveraged in this kind of a network. PathNet includes aspects of transfer learning, continual learning and multitask learning. These are aspects that are essential for a more continuously adaptive network and thus an approach that may lead to an AGI (speculative).