Goto

Collaborating Authors


Linear Regression in Tensorflow

@machinelearnbot

Tensorflow is an open source machine learning (ML) library from Google. It has particularly became popular because of the support for Deep Learning. Apart from that it's highly scalable and can run on Android. The documentation is well maintained and several tutorials available for different expertise levels. To learn more about downloading and installing Tesnorflow, visit official website.


Linear Regression in Tensorflow

@machinelearnbot

Tensorflow is an open source machine learning (ML) library from Google. It has particularly became popular because of the support for Deep Learning. Apart from that it's highly scalable and can run on Android. The documentation is well maintained and several tutorials available for different expertise levels. To learn more about downloading and installing Tesnorflow, visit official website.


Linear Regression in Tensorflow

@machinelearnbot

Tensorflow is an open source machine learning (ML) library from Google. It has particularly became popular because of the support for Deep Learning. Apart from that it's highly scalable and can run on Android. The documentation is well maintained and several tutorials available for different expertise levels. To learn more about downloading and installing Tesnorflow, visit official website.


Back to Machine Learning Basics - Linear Regression with Python, SciKit Learn, TensorFlow and PyTorch

#artificialintelligence

In the formula above, f(xi) represents the predicted output value for ith example from the input, and b0 and b1 are regression coefficients that represent the y-intercept and slope of the regression line. We want that value to be as close as possible to the real value – y. Thus model needs to learn the values regression coefficients b0 and b1, based on which model will be able to predict the correct output. In order to make these estimates, the algorithm needs to know how bad are his current estimations of these coefficients. At the beginning of the training process, we feed samples into the algorithm which calculates output f(xi) of the current sample, based on initial values of regression coefficients.