Collaborating Authors

Stem-ming the Tide: Predicting STEM attrition using student transcript data Machine Learning

Science, technology, engineering, and math (STEM) fields play growing roles in national and international economies by driving innovation and generating high salary jobs. Yet, the US is lagging behind other highly industrialized nations in terms of STEM education and training. Furthermore, many economic forecasts predict a rising shortage of domestic STEM-trained professions in the US for years to come. One potential solution to this deficit is to decrease the rates at which students leave STEM-related fields in higher education, as currently over half of all students intending to graduate with a STEM degree eventually attrite. However, little quantitative research at scale has looked at causes of STEM attrition, let alone the use of machine learning to examine how well this phenomenon can be predicted. In this paper, we detail our efforts to model and predict dropout from STEM fields using one of the largest known datasets used for research on students at a traditional campus setting. Our results suggest that attrition from STEM fields can be accurately predicted with data that is routinely collected at universities using only information on students' first academic year. We also propose a method to model student STEM intentions for each academic term to better understand the timing of STEM attrition events. We believe these results show great promise in using machine learning to improve STEM retention in traditional and non-traditional campus settings.

How Widely Can Prediction Models be Generalized? An Analysis of Performance Prediction in Blended Courses Machine Learning

Blended courses that mix in-person instruction with online platforms are increasingly popular in secondary education. These tools record a rich amount of data on students' study habits and social interactions. Prior research has shown that these metrics are correlated with students' performance in face to face classes. However, predictive models for blended courses are still limited and have not yet succeeded at early prediction or cross-class predictions even for repeated offerings of the same course. In this work, we use data from two offerings of two different undergraduate courses to train and evaluate predictive models on student performance based upon persistent student characteristics including study habits and social interactions. We analyze the performance of these models on the same offering, on different offerings of the same course, and across courses to see how well they generalize. We also evaluate the models on different segments of the courses to determine how early reliable predictions can be made. This work tells us in part how much data is required to make robust predictions and how cross-class data may be used, or not, to boost model performance. The results of this study will help us better understand how similar the study habits, social activities, and the teamwork styles are across semesters for students in each performance category. These trained models also provide an avenue to improve our existing support platforms to better support struggling students early in the semester with the goal of providing timely intervention.

Computational Neuroscience Coursera


This course provides an introduction to basic computational methods for understanding what nervous systems do and for determining how they function. We will explore the computational principles governing various aspects of vision, sensory-motor control, learning, and memory. Specific topics that will be covered include representation of information by spiking neurons, processing of information in neural networks, and algorithms for adaptation and learning. We will make use of Matlab/Octave/Python demonstrations and exercises to gain a deeper understanding of concepts and methods introduced in the course. The course is primarily aimed at third- or fourth-year undergraduates and beginning graduate students, as well as professionals and distance learners interested in learning how the brain processes information.

The Most Undervalued Data Science Course


You all know of Coursera's machine learning course and Andrew Ng's deep learning specialization. You even talk about, These are all excellent resources to learn data science, but I want to make you aware of a lesser-known, yet superb, set of courses with which you can augment your knowledge in only a few hours. You've probably heard of Kaggle. You most likely have even participated in a challenge and maybe uploaded some kernels, but did you know Kaggle also provides data science education?