Collaborating Authors

Cybersecurity in the Internet of Things is a game of incentives


Cybersecurity was the virtual elephant in the showroom at this month's Consumer Electronics Show in Las Vegas. Attendees of the annual tech trade show, organized by the Consumer Technology Association, relished the opportunity to experience a future filled with delivery drones, autonomous vehicles, virtual and augmented reality and a plethora of "Internet of things" devices, including fridges, wearables, televisions, routers, speakers, washing machines and even robot home assistants. Given the proliferation of connected devices--already, there are estimated to be at least 6.4 billion--there remains the critical question of how to ensure their security. The cybersecurity challenge posed by the internet of things is unique. The scale of connected devices magnifies the consequences of insecurity.

A Novel Approach for Detection and Ranking of Trendy and Emerging Cyber Threat Events in Twitter Streams Machine Learning

We present a new machine learning and text information extraction approach to detection of cyber threat events in Twitter that are novel (previously non-extant) and developing (marked by significance with respect to similarity with a previously detected event). While some existing approaches to event detection measure novelty and trendiness, typically as independent criteria and occasionally as a holistic measure, this work focuses on detecting both novel and developing events using an unsupervised machine learning approach. Furthermore, our proposed approach enables the ranking of cyber threat events based on an importance score by extracting the tweet terms that are characterized as named entities, keywords, or both. We also impute influence to users in order to assign a weighted score to noun phrases in proportion to user influence and the corresponding event scores for named entities and keywords. To evaluate the performance of our proposed approach, we measure the efficiency and detection error rate for events over a specified time interval, relative to human annotator ground truth.

Adversarial Security Attacks and Perturbations on Machine Learning and Deep Learning Methods Machine Learning

Cybersecurity also benefits from ML and DL methods for various types of applications. These methods however are susceptible to security attacks. The adversaries can exploit the training and testing data of the learning models or can explore the workings of those models for launching advanced future attacks. The topic of adversarial security attacks and perturbations within the ML and DL domains is a recent exploration and a great interest is expressed by the security researchers and practitioners. The literature covers different adversarial security attacks and perturbations on ML and DL methods and those have their own presentation styles and merits. A need to review and consolidate knowledge that is comprehending of this increasingly focused and growing topic of research; however, is the current demand of the research communities. In this review paper, we specifically aim to target new researchers in the cybersecurity domain who may seek to acquire some basic knowledge on the machine learning and deep learning models and algorithms, as well as some of the relevant adversarial security attacks and perturbations.

Cyber-All-Intel: An AI for Security related Threat Intelligence Artificial Intelligence

Keeping up with threat intelligence is a must for a security analyst today. There is a volume of information present in `the wild' that affects an organization. We need to develop an artificial intelligence system that scours the intelligence sources, to keep the analyst updated about various threats that pose a risk to her organization. A security analyst who is better `tapped in' can be more effective. In this paper we present, Cyber-All-Intel an artificial intelligence system to aid a security analyst. It is a system for knowledge extraction, representation and analytics in an end-to-end pipeline grounded in the cybersecurity informatics domain. It uses multiple knowledge representations like, vector spaces and knowledge graphs in a 'VKG structure' to store incoming intelligence. The system also uses neural network models to pro-actively improve its knowledge. We have also created a query engine and an alert system that can be used by an analyst to find actionable cybersecurity insights.