Goto

Collaborating Authors

Artificial intelligence powers protein-folding predictions

#artificialintelligence

Rarely does scientific software spark such sensational headlines. "One of biology's biggest mysteries'largely solved' by AI", declared the BBC. Forbes called it "the most important achievement in AI -- ever". The buzz over the November 2020 debut of AlphaFold2, Google DeepMind's artificial-intelligence (AI) system for predicting the 3D structure of proteins, has only intensified since the tool was made freely available in July. The excitement relates to the software's potential to solve one of biology's thorniest problems -- predicting the functional, folded structure of a protein molecule from its linear amino-acid sequence, right down to the position of each atom in 3D space.


'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures

#artificialintelligence

A protein's function is determined by its 3D shape.Credit: DeepMind An artificial intelligence (AI) network developed by Google AI offshoot DeepMind has made a gargantuan leap in solving one of biology's grandest challenges -- determining a protein's 3D shape from its amino-acid sequence. DeepMind's program, called AlphaFold, outperformed around 100 other teams in a biennial protein-structure prediction challenge called CASP, short for Critical Assessment of Structure Prediction. The results were announced on 30 November, at the start of the conference -- held virtually this year -- that takes stock of the exercise. "This is a big deal," says John Moult, a computational biologist at the University of Maryland in College Park, who co-founded CASP in 1994 to improve computational methods for accurately predicting protein structures. "In some sense the problem is solved."


'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures

Nature

A protein's function is determined by its 3D shape.Credit: DeepMind An artificial intelligence (AI) network developed by Google AI offshoot DeepMind has made a gargantuan leap in solving one of biology's grandest challenges -- determining a protein's 3D shape from its amino-acid sequence. DeepMind's program, called AlphaFold, outperformed around 100 other teams in a biennial protein-structure prediction challenge called CASP, short for Critical Assessment of Structure Prediction. The results were announced on 30 November, at the start of the conference -- held virtually this year -- that takes stock of the exercise. "This is a big deal," says John Moult, a computational biologist at the University of Maryland in College Park, who co-founded CASP in 1994 to improve computational methods for accurately predicting protein structures. "In some sense the problem is solved."


DeepMind's AI predicts structures for a vast trove of proteins

#artificialintelligence

The human mediator complex has long been one of the most challenging multi-protein systems for structural biologists to understand.Credit: Yuan He The human genome holds the instructions for more than 20,000 proteins. But only about one-third of those have had their 3D structures determined experimentally. And in many cases, those structures are only partially known. Now, a transformative artificial intelligence (AI) tool called AlphaFold, which has been developed by Google's sister company DeepMind in London, has predicted the structure of nearly the entire human proteome (the full complement of proteins expressed by an organism). In addition, the tool has predicted almost complete proteomes for various other organisms, ranging from mice and maize (corn) to the malaria parasite (see'Folding options').


The Drug Discoverer - Reflecting on DeepMind's AlphaFold artificial i

#artificialintelligence

Last month, DeepMind published the much anticipated, detailed methodology underlying the latest version of AlphaFold – the UK-based science company's powerful AI system that blew away its rivals in the latest major competition to predict the 3D structure of proteins. AlphaFold's machine learning methodology has been applied to predict structures for almost 99% of human proteins which have now been made publicly available. In this long read, I reflect on the significance of these developments for fundamental research and drug discovery. I wrote this as the ICR celebrates the 10th anniversary of its AI-enabled drug discovery knowledgebase canSAR – which features multiple approaches to predicting'druggability' as an aid to selecting drug targets and accelerating drug discovery. The coronavirus pandemic has, understandably, soaked up a lot of bandwidth when it comes to science news – but one particular non-Covid science story was able to cut through and hit the headlines in the UK and around the world. On 30 November 2020 it was announced that DeepMind – a subsidiary of Google's parent company Alphabet focusing on artificial intelligence – had made what was hailed as a huge leap towards solving one of biology's greatest remaining challenges: the ability to predict the correct, three-dimensional structures of proteins based on their constituent, one-dimensional amino acid sequences. The announcement attracted huge interest, but the expert community has been waiting for the peer-reviewed science publication. The AI methodology has now been published in the leading journal Nature and this was followed rapidly by a second Nature paper from DeepMind and collaborators at the European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), which reports the application of the most recent AlphaFold machine learning system to predict the 3D structures at scale for almost the entire human proteome – 98.5% of human proteins.