Goto

Collaborating Authors

Want to Win at Kaggle? Pay Attention to Your Ensembles.

#artificialintelligence

Summary: Want to win a Kaggle competition or at least get a respectable place on the leaderboard? These days it's all about ensembles and for a lot of practitioners that means reaching for random forests. Random forests have indeed been very successful but it's worth remembering that there are three different categories of ensembles and some important hyper parameters tuning issues within each Here's a brief review. The Kaggle competitions are like formula racing for data science. Winners edge out competitors at the fourth decimal place and like Formula 1 race cars, not many of us would mistake them for daily drivers.


Want to Win at Kaggle? Pay Attention to Your Ensembles.

#artificialintelligence

Summary: Want to win a Kaggle competition or at least get a respectable place on the leaderboard? These days it's all about ensembles and for a lot of practitioners that means reaching for random forests. Random forests have indeed been very successful but it's worth remembering that there are three different categories of ensembles and some important hyper parameters tuning issues within each Here's a brief review. The Kaggle competitions are like formula racing for data science. Winners edge out competitors at the fourth decimal place and like Formula 1 race cars, not many of us would mistake them for daily drivers.


Want to Win at Kaggle? Pay Attention to Your Ensembles.

@machinelearnbot

The Kaggle competitions are like formula racing for data science. Winners edge out competitors at the fourth decimal place and like Formula 1 race cars, not many of us would mistake them for daily drivers. The amount of time devoted and the sometimes extreme techniques wouldn't be appropriate in a data science production environment, but like paddle shifters and exotic suspensions, some of those improvement find their way into day-to-day life. Ensembles, or teams of predictive models working together, have been the core strategy for winning at Kaggle. They've been around for a long time but they are getting better.


Want to Win at Kaggle? Pay Attention to Your Ensembles.

@machinelearnbot

The Kaggle competitions are like formula racing for data science. Winners edge out competitors at the fourth decimal place and like Formula 1 race cars, not many of us would mistake them for daily drivers. The amount of time devoted and the sometimes extreme techniques wouldn't be appropriate in a data science production environment, but like paddle shifters and exotic suspensions, some of those improvement find their way into day-to-day life. Ensembles, or teams of predictive models working together, have been the core strategy for winning at Kaggle. They've been around for a long time but they are getting better.


Ensemble deep learning: A review

arXiv.org Artificial Intelligence

Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions.