Goto

Collaborating Authors

Construct a biomedical knowledge graph with NLP

#artificialintelligence

I have already demonstrated how to create a knowledge graph out of a Wikipedia page. However, since the post got a lot of attention, I've decided to explore other domains where using NLP techniques to construct a knowledge graph makes sense. In my opinion, the biomedical field is a prime example where representing the data as a graph makes sense as you are often analyzing interactions and relations between genes, diseases, drugs, proteins, and more. In the above visualization, we have ascorbic acid, also known as vitamin C, and some of its relations to other concepts. For example, it shows that vitamin C could be used to treat chronic gastritis.


Using Neural Networks for Relation Extraction from Biomedical Literature

arXiv.org Machine Learning

Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.


Coronavirus Knowledge Graph: A Case Study

arXiv.org Artificial Intelligence

The emergence of the novel COVID-19 pandemic has had a significant impact on global healthcare and the economy over the past few months. The virus's rapid widespread has led to a proliferation in biomedical research addressing the pandemic and its related topics. One of the essential Knowledge Discovery tools that could help the biomedical research community understand and eventually find a cure for COVID-19 are Knowledge Graphs. The CORD-19 dataset is a collection of publicly available full-text research articles that have been recently published on COVID-19 and coronavirus topics. Here, we use several Machine Learning, Deep Learning, and Knowledge Graph construction and mining techniques to formalize and extract insights from the PubMed dataset and the CORD-19 dataset to identify COVID-19 related experts and bio-entities. Besides, we suggest possible techniques to predict related diseases, drug candidates, gene, gene mutations, and related compounds as part of a systematic effort to apply Knowledge Discovery methods to help biomedical researchers tackle the pandemic.


Knowledge-based Biomedical Data Science 2019

arXiv.org Artificial Intelligence

Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.


Relationship extraction for knowledge graph creation from biomedical literature

arXiv.org Artificial Intelligence

Biomedical research is growing in such an exponential pace that scientists, researchers and practitioners are no more able to cope with the amount of published literature in the domain. The knowledge presented in the literature needs to be systematized in such a ways that claims and hypothesis can be easily found, accessed and validated. Knowledge graphs can provide such framework for semantic knowledge representation from literature. However, in order to build knowledge graph, it is necessary to extract knowledge in form of relationships between biomedical entities and normalize both entities and relationship types. In this paper, we present and compare few rule-based and machine learning-based (Naive Bayes, Random Forests as examples of traditional machine learning methods and T5-based model as an example of modern deep learning) methods for scalable relationship extraction from biomedical literature for the integration into the knowledge graphs. We examine how resilient are these various methods to unbalanced and fairly small datasets, showing that T5 model handles well both small datasets, due to its pre-training on large C4 dataset as well as unbalanced data. The best performing model was T5 model fine-tuned on balanced data, with reported F1-score of 0.88.