Goto

Collaborating Authors


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


Networked Intelligence: Towards Autonomous Cyber Physical Systems

arXiv.org Artificial Intelligence

Developing intelligent systems requires combining results from both industry and academia. In this report you find an overview of relevant research fields and industrially applicable technologies for building very large scale cyber physical systems. A concept architecture is used to illustrate how existing pieces may fit together, and the maturity of the subsystems is estimated. The goal is to structure the developments and the challenge of machine intelligence for Consumer and Industrial Internet technologists, cyber physical systems researchers and people interested in the convergence of data & Internet of Things. It can be used for planning developments of intelligent systems.


The 2018 Survey: AI and the Future of Humans

#artificialintelligence

"Please think forward to the year 2030. Analysts expect that people will become even more dependent on networked artificial intelligence (AI) in complex digital systems. Some say we will continue on the historic arc of augmenting our lives with mostly positive results as we widely implement these networked tools. Some say our increasing dependence on these AI and related systems is likely to lead to widespread difficulties. Our question: By 2030, do you think it is most likely that advancing AI and related technology systems will enhance human capacities and empower them? That is, most of the time, will most people be better off than they are today? Or is it most likely that advancing AI and related technology systems will lessen human autonomy and agency to such an extent that most people will not be better off than the way things are today? Please explain why you chose the answer you did and sketch out a vision of how the human-machine/AI collaboration will function in 2030.


Visual Analytics of Anomalous User Behaviors: A Survey

arXiv.org Machine Learning

The increasing accessibility of data provides substantial opportunities for understanding user behaviors. Unearthing anomalies in user behaviors is of particular importance as it helps signal harmful incidents such as network intrusions, terrorist activities, and financial frauds. Many visual analytics methods have been proposed to help understand user behavior-related data in various application domains. In this work, we survey the state of art in visual analytics of anomalous user behaviors and classify them into four categories including social interaction, travel, network communication, and transaction. We further examine the research works in each category in terms of data types, anomaly detection techniques, and visualization techniques, and interaction methods. Finally, we discuss the findings and potential research directions.