Goto

Collaborating Authors

Making AI, Machine Learning Work for You!

#artificialintelligence

Most data organisations hold is not labeled, and labeled data is the foundation of AI jobs and AI projects. "Labeled data, means marking up or annotating your data for the target model so it can predict. In general, data labeling includes data tagging, annotation, moderation, classification, transcription, and processing." Particular features are highlighted by labeled data and the classification of those attributes maybe be analysed by models for patterns in order to predict the new targets. An example would be labelling images as cancerous and benign or non-cancerous for a set of medical images that a Convolutional Neural Network (CNN) computer vision algorithm may then classify unseen images of the same class of data in the future. Niti Sharma also notes some key points to consider.


An Introduction to AI

#artificialintelligence

I am Imtiaz Adam, and this article is an introduction to AI key terminologies and methodologies on behalf of myself and DLS (www.dls.ltd). This article has been updated in September 2020 to take into account advances in the field of AI with techniques such as NeuroSymbolic AI, Neuroevolution and Federated Learning. AI deals with the area of developing computing systems which are capable of performing tasks that humans are very good at, for example recognising objects, recognising and making sense of speech, and decision making in a constrained environment. Narrow AI: the field of AI where the machine is designed to perform a single task and the machine gets very good at performing that particular task. However, once the machine is trained, it does not generalise to unseen domains. This is the form of AI that we have today, for example Google Translate.


An Introduction to AI, updated - KDnuggets

#artificialintelligence

We provide an introduction to key concepts and methods in AI, covering Machine Learning and Deep Learning, with an updated extensive list that includes Narrow AI, Super Intelligence, and Classic Artificial Intelligence, as well as recent ideas of NeuroSymbolic AI, Neuroevolution, and Federated Learning.



A Survey of Deep Learning for Scientific Discovery

arXiv.org Machine Learning

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.