Goto

Collaborating Authors

Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.


Artificial Intelligence: Research Impact on Key Industries; the Upper-Rhine Artificial Intelligence Symposium (UR-AI 2020)

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents a collection of accepted papers of the cancelled tri-national 'Upper-Rhine Artificial Inteeligence Symposium' planned for 13th May 2020 in Karlsruhe. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, and Offenburg, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Health State Estimation

arXiv.org Artificial Intelligence

Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.


Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature

arXiv.org Artificial Intelligence

This thesis focuses on the research and development of the Hemodynamic Tissue Signature (HTS) method: an unsupervised machine learning approach to describe the vascular heterogeneity of glioblastomas by means of perfusion MRI analysis. The HTS builds on the concept of habitats. An habitat is defined as a sub-region of the lesion with a particular MRI profile describing a specific physiological behavior. The HTS method delineates four habitats within the glioblastoma: the High Angiogenic Tumor (HAT) habitat, as the most perfused region of the enhancing tumor; the Low Angiogenic Tumor (LAT) habitat, as the region of the enhancing tumor with a lower angiogenic profile; the potentially Infiltrated Peripheral Edema (IPE) habitat, as the non-enhancing region adjacent to the tumor with elevated perfusion indexes; and the Vasogenic Peripheral Edema (VPE) habitat, as the remaining edema of the lesion with the lowest perfusion profile. The results of this thesis have been published in ten scientific contributions, including top-ranked journals and conferences in the areas of Medical Informatics, Statistics and Probability, Radiology & Nuclear Medicine, Machine Learning and Data Mining and Biomedical Engineering. An industrial patent registered in Spain (ES201431289A), Europe (EP3190542A1) and EEUU (US20170287133A1) was also issued, summarizing the efforts of the thesis to generate tangible assets besides the academic revenue obtained from research publications. Finally, the methods, technologies and original ideas conceived in this thesis led to the foundation of ONCOANALYTICS CDX, a company framed into the business model of companion diagnostics for pharmaceutical compounds, thought as a vehicle to facilitate the industrialization of the ONCOhabitats technology.


Augmenting Physiological Time Series Data: A Case Study for Sleep Apnea Detection

arXiv.org Machine Learning

The quantity of labelled data is small due to privacy concerns and the cost of data acquisition and labelling by a medical expert. Furthermore, it is quite common that collected data are unbalanced and getting enough data to personalize models for individuals is very expensive or even infeasible. This paper addresses these problems by (1) designing a recurrent Generative Adversarial Network to generate realistic synthetic data and to augment the original dataset, (2) enabling the generation of balanced datasets based on heavily unbalanced dataset, and (3) to control the data generation in such a way that the generated data resembles data from specific individuals. We apply these solutions for sleep apnea detection and study in the evaluation the performance of four well-known techniques, i.e., K-Nearest Neighbour, Random Forest, Multi-Layer Perceptron, and Support Vector Machine.