Goto

Collaborating Authors

Develop a Model for the Imbalanced Classification of Good and Bad Credit

#artificialintelligence

Misclassification errors on the minority class are more important than other types of prediction errors for some imbalanced classification tasks. One example is the problem of classifying bank customers as to whether they should receive a loan or not. Giving a loan to a bad customer marked as a good customer results in a greater cost to the bank than denying a loan to a good customer marked as a bad customer. This requires careful selection of a performance metric that both promotes minimizing misclassification errors in general, and favors minimizing one type of misclassification error over another. The German credit dataset is a standard imbalanced classification dataset that has this property of differing costs to misclassification errors. Models evaluated on this dataset can be evaluated using the Fbeta-Measure that provides a way of both quantifying model performance generally, and captures the requirement that one type of misclassification error is more costly than another. In this tutorial, you will discover how to develop and evaluate a model for the imbalanced German credit classification dataset. Develop an Imbalanced Classification Model to Predict Good and Bad Credit Photo by AL Nieves, some rights reserved.


Develop a Model for the Imbalanced Classification of Good and Bad Credit - AnalyticsWeek

#artificialintelligence

Misclassification errors on the minority class are more important than other types of prediction errors for some imbalanced classification tasks. One example is the problem of classifying bank customers as to whether they should receive a loan or not. Giving a loan to a bad customer marked as a good customer results in a greater cost to the bank than denying a loan to a good customer marked as a bad customer. This requires careful selection of a performance metric that both promotes minimizing misclassification errors in general, and favors minimizing one type of misclassification error over another. The German credit dataset is a standard imbalanced classification dataset that has this property of differing costs to misclassification errors. Models evaluated on this dataset can be evaluated using the Fbeta-Measure that provides a way of both quantifying model performance generally, and captures the requirement that one type of misclassification error is more costly than another. In this tutorial, you will discover how to develop and evaluate a model for the imbalanced German credit classification dataset. Develop an Imbalanced Classification Model to Predict Good and Bad Credit Photo by AL Nieves, some rights reserved.


Imbalanced Classification with the Adult Income Dataset

#artificialintelligence

Many binary classification tasks do not have an equal number of examples from each class, e.g. the class distribution is skewed or imbalanced. A popular example is the adult income dataset that involves predicting personal income levels as above or below $50,000 per year based on personal details such as relationship and education level. There are many more cases of incomes less than $50K than above $50K, although the skew is not severe. This means that techniques for imbalanced classification can be used whilst model performance can still be reported using classification accuracy, as is used with balanced classification problems. In this tutorial, you will discover how to develop and evaluate a model for the imbalanced adult income classification dataset.


How to Develop an Imbalanced Classification Model to Detect Oil Spills

#artificialintelligence

Many imbalanced classification tasks require a skillful model that predicts a crisp class label, where both classes are equally important. An example of an imbalanced classification problem where a class label is required and both classes are equally important is the detection of oil spills or slicks in satellite images. The detection of a spill requires mobilizing an expensive response, and missing an event is equally expensive, causing damage to the environment. One way to evaluate imbalanced classification models that predict crisp labels is to calculate the separate accuracy on the positive class and the negative class, referred to as sensitivity and specificity. These two measures can then be averaged using the geometric mean, referred to as the G-mean, that is insensitive to the skewed class distribution and correctly reports on the skill of the model on both classes. In this tutorial, you will discover how to develop a model to predict the presence of an oil spill in satellite images and evaluate it using the G-mean metric. Develop an Imbalanced Classification Model to Detect Oil Spills Photo by Lenny K Photography, some rights reserved. In this project, we will use a standard imbalanced machine learning dataset referred to as the "oil spill" dataset, "oil slicks" dataset or simply "oil."


Imbalanced Multiclass Classification with the E.coli Dataset

#artificialintelligence

Multiclass classification problems are those where a label must be predicted, but there are more than two labels that may be predicted. These are challenging predictive modeling problems because a sufficiently representative number of examples of each class is required for a model to learn the problem. It is made challenging when the number of examples in each class is imbalanced, or skewed toward one or a few of the classes with very few examples of other classes. Problems of this type are referred to as imbalanced multiclass classification problems and they require both the careful design of an evaluation metric and test harness and choice of machine learning models. The E.coli protein localization sites dataset is a standard dataset for exploring the challenge of imbalanced multiclass classification.