Goto

Collaborating Authors

Deep Learning for NLP: An Overview of Recent Trends

#artificialintelligence

In a timely new paper, Young and colleagues discuss some of the recent trends in deep learning based natural language processing (NLP) systems and applications. The focus of the paper is on the review and comparison of models and methods that have achieved state-of-the-art (SOTA) results on various NLP tasks such as visual question answering (QA) and machine translation. In this comprehensive review, the reader will get a detailed understanding of the past, present, and future of deep learning in NLP. In addition, readers will also learn some of the current best practices for applying deep learning in NLP. Natural language processing (NLP) deals with building computational algorithms to automatically analyze and represent human language. NLP-based systems have enabled a wide range of applications such as Google's powerful search engine, and more recently, Amazon's voice assistant named Alexa.


Attention and Memory in Deep Learning and NLP

#artificialintelligence

A recent trend in Deep Learning are Attention Mechanisms. In an interview, Ilya Sutskever, now the research director of OpenAI, mentioned that Attention Mechanisms are one of the most exciting advancements, and that they are here to stay. But what are Attention Mechanisms? Attention Mechanisms in Neural Networks are (very) loosely based on the visual attention mechanism found in humans. Human visual attention is well-studied and while there exist different models, all of them essentially come down to being able to focus on a certain region of an image with "high resolution" while perceiving the surrounding image in "low resolution", and then adjusting the focal point over time.


Gentle Introduction to Models for Sequence Prediction with RNNs

#artificialintelligence

Sequence prediction is a problem that involves using historical sequence information to predict the next value or values in the sequence. The sequence may be symbols like letters in a sentence or real values like those in a time series of prices. Sequence prediction may be easiest to understand in the context of time series forecasting as the problem is already generally understood. In this post, you will discover the standard sequence prediction models that you can use to frame your own sequence prediction problems. Discover how to develop LSTMs such as stacked, bidirectional, CNN-LSTM, Encoder-Decoder seq2seq and more in my new book, with 14 step-by-step tutorials and full code.


7 types of Artificial Neural Networks for Natural Language Processing

@machinelearnbot

What is an artificial neural network? What types of artificial neural networks exist? How are different types of artificial neural networks used in natural language processing? We will discuss all these questions in the following article. An artificial neural network (ANN) is a computational nonlinear model based on the neural structure of the brain that is able to learn to perform tasks like classification, prediction, decision-making, visualization, and others just by considering examples.


Evolution of Deep learning models

@machinelearnbot

None of deep learning models discussed here work as classification algorithms. Instead, they can be seen as Pretrainin, automated feature selection and learning, creating a hierarchy of features etc. Once trained (features are selected), the input vectors are transformed into a better representation and these are in turn passed on to a real classifier such as SVM or Logistic regression. This can be represented as below.