Goto

Collaborating Authors


Alphabet's Next Billion-Dollar Business: 10 Industries To Watch - CB Insights Research

#artificialintelligence

Alphabet is using its dominance in the search and advertising spaces -- and its massive size -- to find its next billion-dollar business. From healthcare to smart cities to banking, here are 10 industries the tech giant is targeting. With growing threats from its big tech peers Microsoft, Apple, and Amazon, Alphabet's drive to disrupt has become more urgent than ever before. The conglomerate is leveraging the power of its first moats -- search and advertising -- and its massive scale to find its next billion-dollar businesses. To protect its current profits and grow more broadly, Alphabet is edging its way into industries adjacent to the ones where it has already found success and entering new spaces entirely to find opportunities for disruption. Evidence of Alphabet's efforts is showing up in several major industries. For example, the company is using artificial intelligence to understand the causes of diseases like diabetes and cancer and how to treat them. Those learnings feed into community health projects that serve the public, and also help Alphabet's effort to build smart cities. Elsewhere, Alphabet is using its scale to build a better virtual assistant and own the consumer electronics software layer. It's also leveraging that scale to build a new kind of Google Pay-operated checking account. In this report, we examine how Alphabet and its subsidiaries are currently working to disrupt 10 major industries -- from electronics to healthcare to transportation to banking -- and what else might be on the horizon. Within the world of consumer electronics, Alphabet has already found dominance with one product: Android. Mobile operating system market share globally is controlled by the Linux-based OS that Google acquired in 2005 to fend off Microsoft and Windows Mobile. Today, however, Alphabet's consumer electronics strategy is being driven by its work in artificial intelligence. Google is building some of its own hardware under the Made by Google line -- including the Pixel smartphone, the Chromebook, and the Google Home -- but the company is doing more important work on hardware-agnostic software products like Google Assistant (which is even available on iOS).


Health State Estimation

arXiv.org Artificial Intelligence

Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.


Using Search Queries to Understand Health Information Needs in Africa

arXiv.org Artificial Intelligence

The lack of comprehensive, high-quality health data in developing nations creates a roadblock for combating the impacts of disease. One key challenge is understanding the health information needs of people in these nations. Without understanding people's everyday needs, concerns, and misconceptions, health organizations and policymakers lack the ability to effectively target education and programming efforts. In this paper, we propose a bottom-up approach that uses search data from individuals to uncover and gain insight into health information needs in Africa. We analyze Bing searches related to HIV/AIDS, malaria, and tuberculosis from all 54 African nations. For each disease, we automatically derive a set of common search themes or topics, revealing a wide-spread interest in various types of information, including disease symptoms, drugs, concerns about breastfeeding, as well as stigma, beliefs in natural cures, and other topics that may be hard to uncover through traditional surveys. We expose the different patterns that emerge in health information needs by demographic groups (age and sex) and country. We also uncover discrepancies in the quality of content returned by search engines to users by topic. Combined, our results suggest that search data can help illuminate health information needs in Africa and inform discussions on health policy and targeted education efforts both on- and offline.


The Automated Copywriter: Algorithmic Rephrasing of Health-Related Advertisements to Improve their Performance

arXiv.org Artificial Intelligence

Search advertising is one of the most commonly-used methods of advertising. Past work has shown that search advertising can be employed to improve health by eliciting positive behavioral change. However, writing effective advertisements requires expertise and (possible expensive) experimentation, both of which may not be available to public health authorities wishing to elicit such behavioral changes, especially when dealing with a public health crises such as epidemic outbreaks. Here we develop an algorithm which builds on past advertising data to train a sequence-to-sequence Deep Neural Network which "translates" advertisements into optimized ads that are more likely to be clicked. The network is trained using more than 114 thousands ads shown on Microsoft Advertising. We apply this translator to two health related domains: Medical Symptoms (MS) and Preventative Healthcare (PH) and measure the improvements in click-through rates (CTR). Our experiments show that the generated ads are predicted to have higher CTR in 81% of MS ads and 76% of PH ads. To understand the differences between the generated ads and the original ones we develop estimators for the affective attributes of the ads. We show that the generated ads contain more calls-to-action and that they reflect higher valence (36% increase) and higher arousal (87%) on a sample of 1000 ads. Finally, we run an advertising campaign where 10 random ads and their rephrased versions from each of the domains are run in parallel. We show an average improvement in CTR of 68% for the generated ads compared to the original ads. Our results demonstrate the ability to automatically optimize advertisement for the health domain. We believe that our work offers health authorities an improved ability to help nudge people towards healthier behaviors while saving the time and cost needed to optimize advertising campaigns.