Raymond, Rudy, Osogami, Takayuki, Dasgupta, Sakyasingha

Dynamic Boltzmann Machine (DyBM) has been shown highly efficient to predict time-series data. Gaussian DyBM is a DyBM that assumes the predicted data is generated by a Gaussian distribution whose first-order moment (mean) dynamically changes over time but its second-order moment (variance) is fixed. However, in many financial applications, the assumption is quite limiting in two aspects. First, even when the data follows a Gaussian distribution, its variance may change over time. Such variance is also related to important temporal economic indicators such as the market volatility. Second, financial time-series data often requires learning datasets generated by the generalized Gaussian distribution with an additional shape parameter that is important to approximate heavy-tailed distributions. Addressing those aspects, we show how to extend DyBM that results in significant performance improvement in predicting financial time-series data.

I previously worked on designing some problem sets for a PhD class. One of the assignments dealt with a simple classification problem using data that I took from a kaggle challenge trying to predict fraudulent credit card transactions. The goal of the problem is to predict the probability that a specific credit card transaction is fraudulent. One unforeseen issue with the data was that the unconditional probability that a single credit card transaction is fraudulent is very small. This type of data is known as rare events data, and is common in many areas such as disease detection, conflict prediction and, of course, fraud detection.

To give you an example of the impact of machine learning, Man group's AHL Dimension programme is a $5.1 billion dollar hedge fund which is partially managed by AI. After it started off, by the year 2015, its machine learning algorithms were contributing more than half of the profits of the fund even though the assets under its management were far less. After reading this blog, you would be able to understand the basic logic behind some popular and incredibly resourceful machine learning algorithms which have been used by the trading community as well as serve as the foundation stone on which you step on to create the best machine learning algorithm. Initially developed in statistics to study the relationship between input and output numerical variables, it was adopted by the machine learning community to make predictions based on the linear regression equation. The mathematical representation of linear regression is a linear equation that combines a specific set of input data (x) to predict the output value (y) for that set of input values.

The uncertainties in future Bitcoin price make it difficult to accurately predict the price of Bitcoin. Accurately predicting the price for Bitcoin is therefore important for decision-making process of investors and market players in the cryptocurrency market. Using historical data from 01/01/2012 to 16/08/2019, machine learning techniques (Generalized linear model via penalized maximum likelihood, random forest, support vector regression with linear kernel, and stacking ensemble) were used to forecast the price of Bitcoin. The prediction models employed key and high dimensional technical indicators as the predictors. The performance of these techniques were evaluated using mean absolute percentage error (MAPE), root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R-squared). The performance metrics revealed that the stacking ensemble model with two base learner (random forest and generalized linear model via penalized maximum likelihood) and support vector regression with linear kernel as meta-learner was the optimal model for forecasting Bitcoin price. The MAPE, RMSE, MAE, and R-squared values for the stacking ensemble model were 0.0191%, 15.5331 USD, 124.5508 USD, and 0.9967 respectively. These values show a high degree of reliability in predicting the price of Bitcoin using the stacking ensemble model. Accurately predicting the future price of Bitcoin will yield significant returns for investors and market players in the cryptocurrency market.