Goto

Collaborating Authors

5 Things You Need to Know about Sentiment Analysis and Classification

@machinelearnbot

In the last years, Sentiment Analysis has become a hot-trend topic of scientific and market research in the field of Natural Language Processing (NLP) and Machine Learning. Below, you can find 5 useful things you need to know about Sentiment Analysis that are connected to Social Media, Datasets, Machine Learning, Visualizations, and Evaluation Methods applied by researchers and market experts. Sentiment Analysis examines the problem of studying texts, like posts and reviews, uploaded by users on microblogging platforms, forums, and electronic businesses, regarding the opinions they have about a product, service, event, person or idea. The most common use of Sentiment Analysis is this of classifying a text to a class. Depending on the dataset and the reason, Sentiment Classification can be binary (positive or negative) or multi-class (3 or more classes) problem.


5 Best Sentiment Analysis Companies and Tools for Machine Learning

#artificialintelligence

If so, you've come to the right place. This guide will briefly explain what sentiment analysis is, and introduce companies that provide sentiment annotation tools and services. Sentiment analysis is the process of identifying the emotion and/or opinion within unstructured text. The text can be in the form of customer reviews, social media posts, and more. This process allows you to accurately gauge customer opinion about your brand, products, or services.


Microblog Sentiment Classification with Contextual Knowledge Regularization

AAAI Conferences

Microblog sentiment classification is an important research topic which has wide applications in both academia and industry. Because microblog messages are short, noisy and contain masses of acronyms and informal words, microblog sentiment classification is a very challenging task. Fortunately, collectively the contextual information about these idiosyncratic words provide knowledge about their sentiment orientations. In this paper, we propose to use the microblogs' contextual knowledge mined from a large amount of unlabeled data to help improve microblog sentiment classification. We define two kinds of contextual knowledge: word-word association and word-sentiment association. The contextual knowledge is formulated as regularization terms in supervised learning algorithms. An efficient optimization procedure is proposed to learn the model. Experimental results on benchmark datasets show that our method can consistently and significantly outperform the state-of-the-art methods.


Sentiment Classification Using Negation as a Proxy for Negative Sentiment

AAAI Conferences

We explore the relationship between negated text and negative sentiment in the task of sentiment classification. We propose a novel adjustment factor based on negation occurrences as a proxy for negative sentiment that can be applied to lexicon-based classifiers equipped with a negation detection pre-processing step. We performed an experiment on a multi-domain customer reviews dataset obtaining accuracy improvements over a baseline, and we further improved our results using out-of-domain data to calibrate the adjustment factor. We see future work possibilities in exploring negation detection refinements, and expanding the experiment to a broader spectrum of opinionated discourse, beyond that of customer reviews.


Sentiment Analysis with Global Topics and Local Dependency

AAAI Conferences

With the development of Web 2.0, sentiment analysis has now become a popular research problem to tackle. Recently, topic models have been introduced for the simultaneous analysis for topics and the sentiment in a document. These studies, which jointly model topic and sentiment, take the advantage of the relationship between topics and sentiment, and are shown to be superior to traditional sentiment analysis tools. However, most of them make the assumption that, given the parameters, the sentiments of the words in the document are all independent. In our observation, in contrast, sentiments are expressed in a coherent way. The local conjunctive words, such as “and” or “but”, are often indicative of sentiment transitions. In this paper, we propose a major departure from the previous approaches by making two linked contributions. First, we assume that the sentiments are related to the topic in the document, and put forward a joint sentiment and topic model, i.e. Sentiment-LDA. Second, we observe that sentiments are dependent on local context. Thus, we further extend the Sentiment-LDA model to Dependency-Sentiment-LDA model by relaxing the sentiment independent assumption in Sentiment-LDA. The sentiments of words are viewed as a Markov chain in Dependency-Sentiment-LDA. Through experiments, we show that exploiting the sentiment dependency is clearly advantageous, and that the Dependency-Sentiment-LDA is an effective approach for sentiment analysis.