Goto

Collaborating Authors

FBI uses questionable facial recognition software to comb vast photo database

The Guardian

The FBI maintains a huge database of more than 411m photos culled from sources including driver's licenses, passport applications and visa applications, which it cross-references with photos of criminal suspects using largely untested and questionably accurate facial recognition software. A study from the Government Accountability Office (GAO) released on Wednesday for the first time revealed the extent of the program, which had been queried several years before through a Freedom of Information Act request from the Electronic Frontier Foundation (EFF). The GAO, a watchdog office internal to the US federal government, found that the FBI did not appropriately disclose the database's impact on public privacy until it audited the bureau in May. The office recommended that the attorney general determine why the FBI did not obey the disclosure requirements, and that it conduct accuracy tests to determine whether the software is correctly cross-referencing driver's licenses and passport photos with images of criminal suspects. The Department of Justice "disagreed" with three of the GAO's six recommendations, according to the office, which affirmed their validity.


Facial recognition software is biased towards white men, researcher finds

#artificialintelligence

New research out of MIT's Media Lab is underscoring what other experts have reported or at least suspected before: facial recognition technology is subject to biases based on the data sets provided and the conditions in which algorithms are created. Joy Buolamwini, a researcher at the MIT Media Lab, recently built a dataset of 1,270 faces, using the faces of politicians, selected based on their country's rankings for gender parity (in other words, having a significant number of women in public office). Buolamwini then tested the accuracy of three facial recognition systems: those made by Microsoft, IBM, and Megvii of China. The results, which were originally reported in The New York Times, showed inaccuracies in gender identification dependent on a person's skin color. Gender was misidentified in less than one percent of lighter-skinned males; in up to seven percent of lighter-skinned females; up to 12 percent of darker-skinned males; and up to 35 percent in darker-skinner females.


AI Weekly: Facial recognition policy makers debate temporary moratorium vs. permanent ban

#artificialintelligence

On Tuesday, in an 8-1 tally, the San Francisco Board of Supervisors voted to ban the use of facial recognition software by city departments, including police. Supporters of the ban cited racial inequality in audits of facial recognition software from companies like Amazon and Microsoft, as well as dystopian surveillance happening now in China. At the core of arguments around the regulation of facial recognition software use is the question of whether a temporary moratorium should be put in place until police and governments adopt policies and standards or it should be permanently banned. Some believe facial recognition software can be used to exonerate the innocent and that more time is needed to gather information. Others, like San Francisco Supervisor Aaron Peskin, believe that even if AI systems achieve racial parity, facial recognition is a "uniquely dangerous and oppressive technology."


Image Recognition: A peek into the future

#artificialintelligence

Our brains are wired in a way that they can differentiate between objects, both living and non-living by simply looking at them. In fact, the recognition of objects and a situation through visualization is the fastest way to gather, as well as to relate information. This becomes a pretty big deal for computers where a vast amount of data has to be stuffed into it, before the computer can perform an operation on its own. Ironically, with each passing day, it is becoming essential for machines to identify objects through facial recognition, so that humans can take the next big step towards a more scientifically advanced social mechanism. So, what progress have we really made in that respect?