Goto

Collaborating Authors

EvolveGraph: Dynamic Neural Relational Reasoning for Interacting Systems

#artificialintelligence

Multi-agent interacting systems are prevalent in the world, from purely physical systems to complicated social dynamic systems. The interactions between entities / components can give rise to very complex behavior patterns at the level of both individuals and the multi-agent system as a whole. Since usually only the trajectories of individual entities are observed without any knowledge of the underlying interaction patterns, and there are usually multiple possible modalities for each agent with uncertainty, it is challenging to model their dynamics and forecast their future behaviors. We introduce a generic trajectory forecasting framework (named EvolveGraph) with explicit relational structure recognition and prediction via latent interaction graphs among multiple heterogeneous, interactive agents. Considering the uncertainty of future behaviors, the model is designed to provide multi-modal prediction hypotheses.


Factorised Neural Relational Inference for Multi-Interaction Systems

arXiv.org Machine Learning

Many complex natural and cultural phenomena are well modelled by systems of simple interactions between particles. A number of architectures have been developed to articulate this kind of structure, both implicitly and explicitly. We consider an unsupervised explicit model, the NRI model, and make a series of representational adaptations and physically motivated changes. Most notably we factorise the inferred latent interaction graph into a multiplex graph, allowing each layer to encode for a different interaction-type. This fNRI model is smaller in size and significantly outperforms the original in both edge and trajectory prediction, establishing a new state-of-the-art. We also present a simplified variant of our model, which demonstrates the NRI's formulation as a variational auto-encoder is not necessary for good performance, and make an adaptation to the NRI's training routine, significantly improving its ability to model complex physical dynamical systems.


Recurrent Relational Networks

Neural Information Processing Systems

This paper is concerned with learning to solve tasks that require a chain of interde- pendent steps of relational inference, like answering complex questions about the relationships between objects, or solving puzzles where the smaller elements of a solution mutually constrain each other. We introduce the recurrent relational net- work, a general purpose module that operates on a graph representation of objects. As a generalization of Santoro et al. [2017]’s relational network, it can augment any neural network model with the capacity to do many-step relational reasoning. We achieve state of the art results on the bAbI textual question-answering dataset with the recurrent relational network, consistently solving 20/20 tasks. As bAbI is not particularly challenging from a relational reasoning point of view, we introduce Pretty-CLEVR, a new diagnostic dataset for relational reasoning. In the Pretty- CLEVR set-up, we can vary the question to control for the number of relational reasoning steps that are required to obtain the answer. Using Pretty-CLEVR, we probe the limitations of multi-layer perceptrons, relational and recurrent relational networks. Finally, we show how recurrent relational networks can learn to solve Sudoku puzzles from supervised training data, a challenging task requiring upwards of 64 steps of relational reasoning. We achieve state-of-the-art results amongst comparable methods by solving 96.6% of the hardest Sudoku puzzles.


Recurrent Relational Networks

Neural Information Processing Systems

This paper is concerned with learning to solve tasks that require a chain of interde- pendent steps of relational inference, like answering complex questions about the relationships between objects, or solving puzzles where the smaller elements of a solution mutually constrain each other. We introduce the recurrent relational net- work, a general purpose module that operates on a graph representation of objects. As a generalization of Santoro et al. [2017]’s relational network, it can augment any neural network model with the capacity to do many-step relational reasoning. We achieve state of the art results on the bAbI textual question-answering dataset with the recurrent relational network, consistently solving 20/20 tasks. As bAbI is not particularly challenging from a relational reasoning point of view, we introduce Pretty-CLEVR, a new diagnostic dataset for relational reasoning. In the Pretty- CLEVR set-up, we can vary the question to control for the number of relational reasoning steps that are required to obtain the answer. Using Pretty-CLEVR, we probe the limitations of multi-layer perceptrons, relational and recurrent relational networks. Finally, we show how recurrent relational networks can learn to solve Sudoku puzzles from supervised training data, a challenging task requiring upwards of 64 steps of relational reasoning. We achieve state-of-the-art results amongst comparable methods by solving 96.6% of the hardest Sudoku puzzles.


Compositional Language Understanding with Text-based Relational Reasoning

arXiv.org Artificial Intelligence

Neural networks for natural language reasoning have largely focused on extractive, fact-based question-answering (QA) and common-sense inference. However, it is also crucial to understand the extent to which neural networks can perform relational reasoning and combinatorial generalization from natural language---abilities that are often obscured by annotation artifacts and the dominance of language modeling in standard QA benchmarks. In this work, we present a novel benchmark dataset for language understanding that isolates performance on relational reasoning. We also present a neural message-passing baseline and show that this model, which incorporates a relational inductive bias, is superior at combinatorial generalization compared to a traditional recurrent neural network approach.