Collaborating Authors

A Comprehensive Guide to Ensemble Learning (with Python codes) - Analytics Vidhya


When you want to purchase a new car, will you walk up to the first car shop and purchase one based on the advice of the dealer? You would likely browser a few web portals where people have posted their reviews and compare different car models, checking for their features and prices. You will also probably ask your friends and colleagues for their opinion. In short, you wouldn't directly reach a conclusion, but will instead make a decision considering the opinions of other people as well. Ensemble models in machine learning operate on a similar idea. They combine the decisions from multiple models to improve the overall performance.

Ensemble Machine Learning With Python (7-Day Mini-Course)


Ensemble learning refers to machine learning models that combine the predictions from two or more models. Ensembles are an advanced approach to machine learning that are often used when the capability and skill of the predictions are more important than using a simple and understandable model. As such, they are often used by top and winning participants in machine learning competitions like the One Million Dollar Netflix Prize and Kaggle Competitions. Modern machine learning libraries like scikit-learn Python provide a suite of advanced ensemble learning methods that are easy to configure and use correctly without data leakage, a common concern when using ensemble algorithms. In this crash course, you will discover how you can get started and confidently bring ensemble learning algorithms to your predictive modeling project with Python in seven days.

A Comprehensive Guide to Ensemble Learning - What Exactly Do You Need to Know -


Ensemble learning techniques have been proven to yield better performance on machine learning problems. We can use these techniques for regression as well as classification problems. The final prediction from these ensembling techniques is obtained by combining results from several base models. Averaging, voting and stacking are some of the ways the results are combined to obtain a final prediction. In this article, we will explore how ensemble learning can be used to come up with optimal machine learning models. Ensemble learning is a combination of several machine learning models in one problem.

Fake News Detection Using Machine Learning Ensemble Methods


The advent of the World Wide Web and the rapid adoption of social media platforms (such as Facebook and Twitter) paved the way for information dissemination that has never been witnessed in the human history before. With the current usage of social media platforms, consumers are creating and sharing more information than ever before, some of which are misleading with no relevance to reality. Automated classification of a text article as misinformation or disinformation is a challenging task. Even an expert in a particular domain has to explore multiple aspects before giving a verdict on the truthfulness of an article. In this work, we propose to use machine learning ensemble approach for automated classification of news articles. Our study explores different textual properties that can be used to distinguish fake contents from real. By using those properties, we train a combination of different machine learning algorithms using various ensemble methods and evaluate their performance on 4 real world datasets. Experimental evaluation confirms the superior performance of our proposed ensemble learner approach in comparison to individual learners. The advent of the World Wide Web and the rapid adoption of social media platforms (such as Facebook and Twitter) paved the way for information dissemination that has never been witnessed in the human history before. Besides other use cases, news outlets benefitted from the widespread use of social media platforms by providing updated news in near real time to its subscribers. The news media evolved from newspapers, tabloids, and magazines to a digital form such as online news platforms, blogs, social media feeds, and other digital media formats [1]. It became easier for consumers to acquire the latest news at their fingertips.

Ensemble Learning to Improve Machine Learning Results


Ensemble learning helps improve machine learning results by combining several models. This approach allows the production of better predictive performance compared to a single model. That is why ensemble methods placed first in many prestigious machine learning competitions, such as the Netflix Competition, KDD 2009, and Kaggle. The Statsbot team wanted to give you the advantage of this approach and asked a data scientist, Vadim Smolyakov, to dive into three basic ensemble learning techniques. Ensemble methods are meta-algorithms that combine several machine learning techniques into one predictive model in order to decrease variance (bagging), bias (boosting), or improve predictions (stacking).