Goto

Collaborating Authors

Artificial Intelligence Uncovers "Genes of Importance" in Agriculture and Medicine

#artificialintelligence

Machine learning can pinpoint "genes of importance" that help crops to grow with less fertilizer, according to a new study published in Nature Communications. It can also predict additional traits in plants and disease outcomes in animals, illustrating its applications beyond agriculture. Using genomic data to predict outcomes in agriculture and medicine is both a promise and challenge for systems biology. Researchers have been working to determine how to best use the vast amount of genomic data available to predict how organisms respond to changes in nutrition, toxins, and pathogen exposure--which in turn would inform crop improvement, disease prognosis, epidemiology, and public health. However, accurately predicting such complex outcomes in agriculture and medicine from genome-scale information remains a significant challenge.


Machine learning pinpoints genes that enable plants to grow more with less fertilizer

#artificialintelligence

Machine learning can pinpoint "genes of importance" that help crops to grow with less fertilizer, according to a new study published in Nature Communications. It can also predict additional traits in plants and disease outcomes in animals, illustrating its applications beyond agriculture. Using genomic data to predict outcomes in agriculture and medicine is both a promise and challenge for systems biology. Researchers have been working to determine how to best use the vast amount of genomic data available to predict how organisms respond to changes in nutrition, toxins, and pathogen exposure-;which in turn would inform crop improvement, disease prognosis, epidemiology, and public health. However, accurately predicting such complex outcomes in agriculture and medicine from genome-scale information remains a significant challenge. In the Nature Communications study, NYU researchers and collaborators in the U.S. and Taiwan tackled this challenge using machine learning, a type of artificial intelligence used to detect patterns in data.


Inner Workings: Crop researchers harness artificial intelligence to breed crops for the changing climate

#artificialintelligence

Until recently, the field of plant breeding looked a lot like it did in centuries past. A breeder might examine, for example, which tomato plants were most resistant to drought and then cross the most promising plants to produce the most drought-resistant offspring. This process would be repeated, plant generation after generation, until, over the course of roughly seven years, the breeder arrived at what seemed the optimal variety. Researchers at ETH Zürich use standard color images and thermal images collected by drone to determine how plots of wheat with different genotypes vary in grain ripeness. Image credit: Norbert Kirchgessner (ETH Zürich, Zürich, Switzerland). Now, with the global population expected to swell to nearly 10 billion by 2050 (1) and climate change shifting growing conditions (2), crop breeder and geneticist Steven Tanksley doesn’t think plant breeders have that kind of time. “We have to double the productivity per acre of our major crops if we’re going to stay on par with the world’s needs,” says Tanksley, a professor emeritus at Cornell University in Ithaca, NY. To speed up the process, Tanksley and others are turning to artificial intelligence (AI). Using computer science techniques, breeders can rapidly assess which plants grow the fastest in a particular climate, which genes help plants thrive there, and which plants, when crossed, produce an optimum combination of genes for a given location, opting for traits that boost yield and stave off the effects of a changing climate. Large seed companies in particular have been using components of AI for more than a decade. With computing power rapidly advancing, the techniques are now poised to accelerate breeding on a broader scale. AI is not, however, a panacea. Crop breeders still grapple with tradeoffs such as higher yield versus marketable appearance. And even the most sophisticated AI …


Machine learning and its applications in plant molecular studies

#artificialintelligence

The advent of high-throughput genomic technologies has resulted in the accumulation of massive amounts of genomic information. However, biologists are challenged with how to effectively analyze these data. Machine learning can provide tools for better and more efficient data analysis. Unfortunately, because many plant biologists are unfamiliar with machine learning, its application in plant molecular studies has been restricted to a few species and a limited set of algorithms. Thus, in this study, we provide the basic steps for developing machine learning frameworks and present a comprehensive overview of machine learning algorithms and various evaluation metrics. Furthermore, we introduce sources of important curated plant genomic data and R packages to enable plant biologists to easily and quickly apply appropriate machine learning algorithms in their research. Finally, we discuss current applications of machine learning algorithms for identifying various genes related to resistance to biotic and abiotic stress. Broad application of machine learning and the accumulation of plant sequencing data will advance plant molecular studies. The advent of high-throughput sequencing technologies has produced several large-scale data sets. This enormous amount of information enables biologists to explore topics that were once difficult or impossible to investigate, such as associations between microRNA and certain diseases, the causes of vascular inflammation and atherosclerosis in humans [1–3] and stress breeding in plants [4]. However, many challenges have also emerged. For example, the European Bioinformatics Institute now stores 273 petabytes of raw molecular data on humans, plants and animals (https://www.ebi.ac.uk/).


Farmers Can Now Buy Designer Microbes to Replace Fertilizer

WIRED

Jake Misch's family has been growing corn in the sandy soils of northwestern Indiana for four generations. Like other farmers in the area, the Misches spray their fields with a nitrogen-rich fertilizer once in the spring when the seeds are planted, and once later in the year, when the corn is going through its growth spurt. Fertilizing is essential to yielding a healthy harvest, but it's expensive enough that he stresses about it, and, as he's well aware, it's not great for the planet. Which is why next year, Misch is trying something new. As the seedlings grow, these special microbes will colonize their roots, forming hairy nodes and converting atmospheric nitrogen into a form that plants can use to turn sunlight into sugar.