Goto

Collaborating Authors


A Novel Approach for Detection and Ranking of Trendy and Emerging Cyber Threat Events in Twitter Streams

arXiv.org Machine Learning

We present a new machine learning and text information extraction approach to detection of cyber threat events in Twitter that are novel (previously non-extant) and developing (marked by significance with respect to similarity with a previously detected event). While some existing approaches to event detection measure novelty and trendiness, typically as independent criteria and occasionally as a holistic measure, this work focuses on detecting both novel and developing events using an unsupervised machine learning approach. Furthermore, our proposed approach enables the ranking of cyber threat events based on an importance score by extracting the tweet terms that are characterized as named entities, keywords, or both. We also impute influence to users in order to assign a weighted score to noun phrases in proportion to user influence and the corresponding event scores for named entities and keywords. To evaluate the performance of our proposed approach, we measure the efficiency and detection error rate for events over a specified time interval, relative to human annotator ground truth.


Cybersecurity in the Internet of Things is a game of incentives

#artificialintelligence

Cybersecurity was the virtual elephant in the showroom at this month's Consumer Electronics Show in Las Vegas. Attendees of the annual tech trade show, organized by the Consumer Technology Association, relished the opportunity to experience a future filled with delivery drones, autonomous vehicles, virtual and augmented reality and a plethora of "Internet of things" devices, including fridges, wearables, televisions, routers, speakers, washing machines and even robot home assistants. Given the proliferation of connected devices--already, there are estimated to be at least 6.4 billion--there remains the critical question of how to ensure their security. The cybersecurity challenge posed by the internet of things is unique. The scale of connected devices magnifies the consequences of insecurity.


Cyber-All-Intel: An AI for Security related Threat Intelligence

arXiv.org Artificial Intelligence

Keeping up with threat intelligence is a must for a security analyst today. There is a volume of information present in `the wild' that affects an organization. We need to develop an artificial intelligence system that scours the intelligence sources, to keep the analyst updated about various threats that pose a risk to her organization. A security analyst who is better `tapped in' can be more effective. In this paper we present, Cyber-All-Intel an artificial intelligence system to aid a security analyst. It is a system for knowledge extraction, representation and analytics in an end-to-end pipeline grounded in the cybersecurity informatics domain. It uses multiple knowledge representations like, vector spaces and knowledge graphs in a 'VKG structure' to store incoming intelligence. The system also uses neural network models to pro-actively improve its knowledge. We have also created a query engine and an alert system that can be used by an analyst to find actionable cybersecurity insights.


Attacking Artificial Intelligence: AI's Security Vulnerability and What Policymakers Can Do About It

#artificialintelligence

Artificial intelligence systems can be attacked. The methods underpinning the state-of-the-art artificial intelligence systems are systematically vulnerable to a new type of cybersecurity attack called an "artificial intelligence attack." Using this attack, adversaries can manipulate these systems in order to alter their behavior to serve a malicious end goal. As artificial intelligence systems are further integrated into critical components of society, these artificial intelligence attacks represent an emerging and systematic vulnerability with the potential to have significant effects on the security of the country. These "AI attacks" are fundamentally different from traditional cyberattacks. Unlike traditional cyberattacks that are caused by "bugs" or human mistakes in code, AI attacks are enabled by inherent limitations in the underlying AI algorithms that currently cannot be fixed. Further, AI attacks fundamentally expand the set of entities that can be used to execute ...