Building Advanced OpenCV3 Projects with Python Udemy


OpenCV is a native cross-platform C library for Computer Vision, Machine Learning, and image processing. It is increasingly being adopted for development in Python. This course features some trending applications of vision and deep learning and will help you master these techniques. You will learn how to retrieve structure from motion (sfm) and you will also see how we can build an application to capture 2D images and join them dynamically to achieve street views by capturing camera projection angles and relative image positions. You will also learn how to track your head in 3D in real-time, and perform facial recognition against a goldenset.

Computer Vision, Machine Learning with Core ML, Swift in iOS


Self driving cars thought to be a distant dream just a few decades ago. However, thanks to the recent progress made in various fields of computer science, this dream is becoming a reality now. Computer vision plays a central role in understanding the capabilities these vehicles required to be able to operate not only under standard conditions, but also under the most unexpected situations. Machine Learning is everywhere these days. We live in a world where Machine Learning and Artificial Intelligence is not obscure mathematical and science fiction anymore they have become crucial part of our lives.

Trudeau gets his geek on at U of T, talking AI and Canada's future


Prime Minister Justin Trudeau reaffirmed his nerd-in-chief reputation and outlined his government's vision to capitalize on Canada's early lead in artificial intelligence, or AI, during an appearance today at the University of Toronto's Rotman School of Management. Trudeau, a self-professed "geek," was a special guest at an annual business of AI conference hosted by Rotman's Creative Destruction Lab (CDL), a seed stage accelerator that specializes in building AI-powered startups. "I think we all understand, certainly in this room, the way the world is going," Trudeau said during a 20-minute conversation with Shivon Zilis of Tesla, Bloomberg Beta and Open AI. "So let's be part of it and help shape it, and let's make sure we're benefiting from the innovations – in both the designing of them and the applications and the jobs." In recent years, Canada – and Toronto in particular – has emerged as a hotbed of AI activity thanks in part to fundamental research performed by people like U of T's University Professor Emeritus Geoffrey Hinton, who is known as the "godfather of deep learning" and works for Google, and U of T Associate Professor Raquel Urtasun, who is heading up Uber's self-driving car lab in Toronto. In a bid to capitalize on the country's early lead that is expected to transform everything from transportation to medicine, the Trudeau government announced in March that it would make a $125 million investment in a pan-Canadian AI strategy.

It Ain't Me, Babe: Researchers Find Flaws In Police Facial Recognition

NPR Technology

Stephen Lamm, a supervisor with the ID fraud unit of the North Carolina Department of Motor Vehicles, looks through photos in a facial recognition system in 2009 in Raleigh, N.C. Stephen Lamm, a supervisor with the ID fraud unit of the North Carolina Department of Motor Vehicles, looks through photos in a facial recognition system in 2009 in Raleigh, N.C. Nearly half of all American adults have been entered into law enforcement facial recognition databases, according to a recent report from Georgetown University's law school. But there are many problems with the accuracy of the technology that could have an impact on a lot of innocent people. There's a good chance your driver's license photo is in one of these databases.

'Godfather' of deep learning is reimagining AI


Geoffrey Hinton may be the "godfather" of deep learning, a suddenly hot field of artificial intelligence, or AI – but that doesn't mean he's resting on his algorithms. Hinton, a University Professor Emeritus at the University of Toronto, recently released two new papers that promise to improve the way machines understand the world through images or video – a technology with applications ranging from self-driving cars to making medical diagnoses. "This is a much more robust way to detect objects than what we have at present," Hinton, who is also a fellow at Google's AI research arm, said today at a tech conference in Toronto. "If you've been in the field for a long time like I have, you know that the neural nets that we use now – there's nothing special about them. We just sort of made them up."