Goto

Collaborating Authors

Watch Paralyzed Monkeys Walk Again

Slate

Unlike other research that focused on reading signals from the brains of paralyzed people or animals and translating them into the movements of an electronic arm or a cursor on a screen, Courtine's team used an electrode implanted in the monkey's brain to read the animal's intention to move its legs, then wirelessly transmitted that signal to other electrodes implanted along the animal's spine, past its injury. Those electrodes then fired in a pattern similar to the natural nerve signals that would come down the spine of a healthy animal.


Your brain fills gaps in your hearing without you realising

New Scientist

Noise is everywhere, but that's OK. Your brain can still keep track of a conversation in the face of revving motorcycles, noisy cocktail parties or screaming children – in part by predicting what's coming next and filling in any blanks. New data suggests that these insertions are processed as if the brain had really heard the parts of the word that are missing. "The brain has evolved a way to overcome interruptions that happen in the real world," says Matthew Leonard at the University of California, San Francisco. We've known since the 1970s that the brain can "fill in" inaudible sections of speech, but understanding how it achieves this phenomenon – termed perceptual restoration – has been difficult.


The most common methods of measuring the resistance of an earth electrode EEP

#artificialintelligence

When an earth electrode system has been designed and installed, it is usually necessary to measure and confirm the earth resistance between the electrode and "true Earth". The most commonly used method of measuring the earth resistance of an earth electrode is the 3-point measuring technique shown in Figure 1. This method is derived from the 4-point method, which is used for soil resistivity measurements. The 3-point method, called the "fall of potential" method, comprises the Earth Electrode to be measured and two other electrically independent test electrodes, usually labelled P (Potential) and C (Current). These test electrodes can be of lesser "quality" (higher earth resistance) but must be electrically independent of the electrode to be measured.


The most common methods of measuring the resistance of an earth electrode EEP

#artificialintelligence

When an earth electrode system has been designed and installed, it is usually necessary to measure and confirm the earth resistance between the electrode and "true Earth". The most commonly used method of measuring the earth resistance of an earth electrode is the 3-point measuring technique shown in Figure 1. This method is derived from the 4-point method, which is used for soil resistivity measurements. The 3-point method, called the "fall of potential" method, comprises the Earth Electrode to be measured and two other electrically independent test electrodes, usually labelled P (Potential) and C (Current). These test electrodes can be of lesser "quality" (higher earth resistance) but must be electrically independent of the electrode to be measured.


The most common methods of measuring the resistance of an earth electrode EEP

#artificialintelligence

When an earth electrode system has been designed and installed, it is usually necessary to measure and confirm the earth resistance between the electrode and "true Earth". The most commonly used method of measuring the earth resistance of an earth electrode is the 3-point measuring technique shown in Figure 1. This method is derived from the 4-point method, which is used for soil resistivity measurements. The 3-point method, called the "fall of potential" method, comprises the Earth Electrode to be measured and two other electrically independent test electrodes, usually labelled P (Potential) and C (Current). These test electrodes can be of lesser "quality" (higher earth resistance) but must be electrically independent of the electrode to be measured.