Collaborating Authors

EvilModel: Hiding Malware Inside of Neural Network Models Artificial Intelligence

Delivering malware covertly and evasively is critical to advanced malware campaigns. In this paper, we present a new method to covertly and evasively deliver malware through a neural network model. Neural network models are poorly explainable and have a good generalization ability. By embedding malware in neurons, the malware can be delivered covertly, with minor or no impact on the performance of neural network. Meanwhile, because the structure of the neural network model remains unchanged, it can pass the security scan of antivirus engines. Experiments show that 36.9MB of malware can be embedded in a 178MB-AlexNet model within 1% accuracy loss, and no suspicion is raised by anti-virus engines in VirusTotal, which verifies the feasibility of this method. With the widespread application of artificial intelligence, utilizing neural networks for attacks becomes a forwarding trend. We hope this work can provide a reference scenario for the defense on neural network-assisted attacks.

DeepLocker: When malware turns artificial intelligence into a weapon


AI can be used to automatically detect and combat malware -- but this does not mean hackers can also use it to their advantage. Cybersecurity, in a world full of networked systems, data collection, Internet of Things (IoT) devices and mobility, has become a race between white hats and threat actors. Traditional cybersecurity solutions, such as bolt-on antivirus software, are no longer enough. Cyberattackers are exploiting every possible avenue to steal data, infiltrate networks, disrupt critical systems, rinse bank accounts, and hold businesses to ransom. The rise of state-sponsored attacks does not help, either.

DeepSign: Deep Learning for Automatic Malware Signature Generation and Classification Machine Learning

This paper presents a novel deep learning based method for automatic malware signature generation and classification. The method uses a deep belief network (DBN), implemented with a deep stack of denoising autoencoders, generating an invariant compact representation of the malware behavior. While conventional signature and token based methods for malware detection do not detect a majority of new variants for existing malware, the results presented in this paper show that signatures generated by the DBN allow for an accurate classification of new malware variants. Using a dataset containing hundreds of variants for several major malware families, our method achieves 98.6% classification accuracy using the signatures generated by the DBN. The presented method is completely agnostic to the type of malware behavior that is logged (e.g., API calls and their parameters, registry entries, websites and ports accessed, etc.), and can use any raw input from a sandbox to successfully train the deep neural network which is used to generate malware signatures.

Static Malware Detection & Subterfuge: Quantifying the Robustness of Machine Learning and Current Anti-Virus Machine Learning

As machine-learning (ML) based systems for malware detection become more prevalent, it becomes necessary to quantify the benefits compared to the more traditional anti-virus (AV) systems widely used today. It is not practical to build an agreed upon test set to benchmark malware detection systems on pure classification performance. Instead we tackle the problem by creating a new testing methodology, where we evaluate the change in performance on a set of known benign & malicious files as adversarial modifications are performed. The change in performance combined with the evasion techniques then quantifies a system's robustness against that approach. Through these experiments we are able to show in a quantifiable way how purely ML based systems can be more robust than AV products at detecting malware that attempts evasion through modification, but may be slower to adapt in the face of significantly novel attacks.

6 ways hackers exploit machine learning tools


Defined as the "ability for (computers) to learn without being explicitly programmed," machine learning is huge news for the information security industry. It's a technology that potentially can help security analysts with everything from malware and log analysis to possibly identifying and closing vulnerabilities earlier. Perhaps too, it could improve endpoint security, automate repetitive tasks, and even reduce the likelihood of attacks resulting in data exfiltration.