In-depth study of Machine Learning Algorithms


Many of us do not know that there is a proper list of machine learning algorithms. So here in this article, we will see some methods of using these algorithms. Through these Machine learning algorithm, you also get to know more about Artificial intelligence and designing machine learning system. These are the most important Algorithms in Machine Learning. If you are aware of these Algorithms then you can use them well to apply in almost any Data Problem.

Supervised vs Unsupervised Learning


In machine learning, most tasks can be easily categorized into one of two different classes: supervised learning problems or unsupervised learning problems. In supervised learning, data has labels or classes appended to it, while in the case of unsupervised learning the data is unlabeled. Let's take a close look at why this distinction is important and look at some of the algorithms associated with each type of learning. Most machine learning tasks are in the domain of supervised learning. In supervised learning algorithms, the individual instances/data points in the dataset have a class or label assigned to them.

Tensor Sparse PCA and Face Recognition: A Novel Approach Machine Learning

Face recognition is the important field in machine learning and pattern recognition research area. It has a lot of applications in military, finance, public security, to name a few. In this paper, the combination of the tensor sparse PCA with the nearest-neighbor method (and with the kernel ridge regression method) will be proposed and applied to the face dataset. Experimental results show that the combination of the tensor sparse PCA with any classification system does not always reach the best accuracy performance measures. However, the accuracy of the combination of the sparse PCA method and one specific classification system is always better than the accuracy of the combination of the PCA method and one specific classification system and is always better than the accuracy of the classification system itself.

Machine Learning Algorithms: Which One to Choose for Your Problem


When I was beginning my way in data science, I often faced the problem of choosing the most appropriate algorithm for my specific problem. If you're like me, when you open some article about machine learning algorithms, you see dozens of detailed descriptions. The paradox is that they don't ease the choice. In this article for Statsbot, I will try to explain basic concepts and give some intuition of using different kinds of machine learning algorithms in different tasks. At the end of the article, you'll find the structured overview of the main features of described algorithms.

The Machine Learning Algorithms Used in Self-Driving Cars


Today, the machine learning algorithms are extensively used to find the solutions to various challenges arising in manufacturing self-driving cars. With the incorporation of sensor data processing in an ECU (Electronic Control Unit) in a car, it is essential to enhance the utilization of machine learning to accomplish new tasks. The potential applications include evaluation of driver condition or driving scenario classification through data fusion from different external and internal sensors – like lidar, radars, cameras or the IoT (Internet of Things). The applications that run the infotainment system of a car can receive the information from sensor data fusion systems and for example, have the capability to direct the car to a hospital if it notices that something is not right with the driver. This application based on machine learning also includes the driver's speech and gesture recognition and language translation.