IdeoTrace: A Framework for Ideology Tracing with a Case Study on the 2016 U.S. Presidential Election

arXiv.org Machine Learning

The 2016 United States presidential election has been characterized as a period of extreme divisiveness that was exacerbated on social media by the influence of fake news, trolls, and social bots. However, the extent to which the public became more polarized in response to these influences over the course of the election is not well understood. In this paper we propose IdeoTrace, a framework for (i) jointly estimating the ideology of social media users and news websites and (ii) tracing changes in user ideology over time. We apply this framework to the last two months of the election period for a group of 47508 Twitter users and demonstrate that both liberal and conservative users became more polarized over time.


A Data-Driven Study of View Duration on YouTube

AAAI Conferences

Video watching had emerged as one of the most frequent media activities on the Internet. Yet, little is known about how users watch online video. Using two distinct YouTube datasets, a set of random YouTube videos crawled from the Web and a set of videos watched by participants tracked by a Chrome extension, we examine whether and how indicators of collective preferences and reactions are associated with view duration of videos. We show that video view duration is positively associated with the video's view count, the number of likes per view, and the negative sentiment in the comments. These metrics and reactions have a significant predictive power over the duration the video is watched by individuals. Our findings provide a more precise understandings of user engagement with video content in social media beyond view count.


An Army of Me: Sockpuppets in Online Discussion Communities

arXiv.org Machine Learning

In online discussion communities, users can interact and share information and opinions on a wide variety of topics. However, some users may create multiple identities, or sockpuppets, and engage in undesired behavior by deceiving others or manipulating discussions. In this work, we study sockpuppetry across nine discussion communities, and show that sockpuppets differ from ordinary users in terms of their posting behavior, linguistic traits, as well as social network structure. Sockpuppets tend to start fewer discussions, write shorter posts, use more personal pronouns such as "I", and have more clustered ego-networks. Further, pairs of sockpuppets controlled by the same individual are more likely to interact on the same discussion at the same time than pairs of ordinary users. Our analysis suggests a taxonomy of deceptive behavior in discussion communities. Pairs of sockpuppets can vary in their deceptiveness, i.e., whether they pretend to be different users, or their supportiveness, i.e., if they support arguments of other sockpuppets controlled by the same user. We apply these findings to a series of prediction tasks, notably, to identify whether a pair of accounts belongs to the same underlying user or not. Altogether, this work presents a data-driven view of deception in online discussion communities and paves the way towards the automatic detection of sockpuppets.


How Community Feedback Shapes User Behavior

arXiv.org Machine Learning

Social media systems rely on user feedback and rating mechanisms for personalization, ranking, and content filtering. However, when users evaluate content contributed by fellow users (e.g., by liking a post or voting on a comment), these evaluations create complex social feedback effects. This paper investigates how ratings on a piece of content affect its author's future behavior. By studying four large comment-based news communities, we find that negative feedback leads to significant behavioral changes that are detrimental to the community. Not only do authors of negatively-evaluated content contribute more, but also their future posts are of lower quality, and are perceived by the community as such. Moreover, these authors are more likely to subsequently evaluate their fellow users negatively, percolating these effects through the community. In contrast, positive feedback does not carry similar effects, and neither encourages rewarded authors to write more, nor improves the quality of their posts. Interestingly, the authors that receive no feedback are most likely to leave a community. Furthermore, a structural analysis of the voter network reveals that evaluations polarize the community the most when positive and negative votes are equally split.


How Community Feedback Shapes User Behavior

AAAI Conferences

Social media systems rely on user feedback and rating mechanisms for personalization, ranking, and content filtering. However, when users evaluate content contributed by fellow users (e.g., by liking a post or voting on a comment), these evaluations create complex social feedback effects. This paper investigates how ratings on a piece of content affect its author's future behavior. By studying four large comment-based news communities, we find that negative feedback leads to significant behavioral changes that are detrimental to the community. Not only do authors of negatively-evaluated content contribute more, but also their future posts are of lower quality, and are perceived by the community as such. Moreover, these authors are more likely to subsequently evaluate their fellow users negatively, percolating these effects through the community. In contrast, positive feedback does not carry similar effects, and neither encourages rewarded authors to write more, nor improves the quality of their posts. Interestingly, the authors that receive no feedback are most likely to leave a community. Furthermore, a structural analysis of the voter network reveals that evaluations polarize the community the most when positive and negative votes are equally split.