Like by smiling? Facebook acquires emotion detection startup FacioMetrics


Facebook could one day build facial gesture controls for its app thanks to the acquisition of a Carnegie Mellon University spinoff company called FacioMetrics. The startup made an app called Intraface that could detect seven different emotions in people's faces, but it's been removed from the app stores. The acquisition aligns with a surprising nugget of information Facebook slipped into a 32-bullet point briefing sent to TechCrunch this month. "Future applications of deep learning platform on mobile: Gesture-based controls, recognize facial expressions and perform related actions" It's not hard to imagine Facebook one day employing FacioMetrics' tech and its own AI to let you add a Like or one of its Wow/Haha/Angry/Sad emoji reactions by showing that emotion with your face. "How people share and communicate is changing and things like masks and other effects allow people to express themselves in fun and creative ways.

Android phones can now read books, signs, business cards via Google's Mobile Vision


Google's Mobile Vision now gains the ability to read text. Google has introduced a new Text API for its Mobile Vision framework that allows Android developers to integrate optical-character recognition (OCR) into their apps. The new Text API appears in the recently-updated Google Play Services version 9.2, which restores Mobile Vision, Google's system to make it easy for developers to add facial detection and barcode-reading functionality to Android apps. The Text OCR technology currently can recognize text in any Latin-based language, covering most European languages, including English, German, and French, as well as Turkish. Google has added Word Lens, a technology acquired last year, to its Google Translate app.

Let's face-off on Facebook


Who knows in future you may be able to emote to your friend's FB posts in your own wide mouthed haha, open mouthed wow or a puckered brow frown? Going by the indications, things are inching towards such a reality. Facebook's latest acquisition – of a face recognition company FacioMetrics -- has become the talk of the tech town regarding the possibilities of inclusion of facial gesture controls on the app front. Close on the heels of this merger, this startup's apps have been withdrawn from the App Store and Play Store. 'Intraface', the facial image analysis app from Faciometrics could enable detection of seven facial emotions.

Text Mining Support in Semantic Annotation and Indexing of Multimedia Data

AAAI Conferences

This short paper is describing a demonstrator that is complementing the paper "Towards Cross-Media Feature Extraction" in these proceedings. The demo is exemplifying the use of textual resources, out of which semantic information can be extracted, for supporting the semantic annotation and indexing of associated video material in the soccer domain. Entities and events extracted from textual data are marked-up with semantic classes derived from an ontology modeling the soccer domain. We show further how extracted Audio-Video features by video analysis can be taken into account for additional annotation of specific soccer event types, and how those different types of annotation can be combined.

Use Amazon Mechanical Turk with Amazon SageMaker for supervised learning Amazon Web Services


Supervised learning needs labels, or annotations, that tell the algorithm what the right answers are in the training phases of your project. In fact, many of the examples of using MXNet, TensorFlow, and PyTorch start with annotated data sets you can use to explore the various features of those frameworks. Unfortunately, when you move from the examples to application, it's much less common to have a fully annotated set of data at your fingertips. This tutorial will show you how you can use Amazon Mechanical Turk (MTurk) from within your Amazon SageMaker notebook to get annotations for your data set and use them for training. TensorFlow provides an example of using an Estimator to classify irises using a neural network classifier.