Goto

Collaborating Authors

Bayesian Basics, Explained

@machinelearnbot

Editor's note: The following is an interview with Columbia University Professor Andrew Gelman conducted by Marketing scientist Kevin Gray, in which Gelman spells out the ABCs of Bayesian statistics. Kevin Gray: Most marketing researchers have heard of Bayesian statistics but know little about it. Can you briefly explain in layperson's terms what it is and how it differs from the'ordinary' statistics most of us learned in college? Andrew Gelman: Bayesian statistics uses the mathematical rules of probability to combines data with "prior information" to give inferences which (if the model being used is correct) are more precise than would be obtained by either source of information alone. Classical statistical methods avoid prior distributions.


Probably Overthinking It: Learning to Love Bayesian Statistics

#artificialintelligence

I did a webcast earlier today about Bayesian statistics. Some time in the next week, the video should be available from O'Reilly. In the meantime, you can see my slides here: And here's a transcript of what I said: Thanks everyone for joining me for this webcast. At the bottom of this slide you can see the URL for my slides, so you can follow along at home. I'm Allen Downey and I'm a professor at Olin College, which is a new engineering college right outside Boston. Our mission is to fix engineering education, and one of the ways I'm working on that is by teaching Bayesian statistics. Bayesian methods have been the victim of a 200 year smear campaign. If you are interested in the history and the people involved, I recommend this book, The Theory That Would Not Die.


Bayesian Basics, Explained

#artificialintelligence

Editor's note: The following is an interview with Columbia University Professor Andrew Gelman conducted by Marketing scientist Kevin Gray, in which Gelman spells out the ABCs of Bayesian statistics. Andrew Gelman: Bayesian statistics uses the mathematical rules of probability to combines data with "prior information" to give inferences which (if the model being used is correct) are more precise than would be obtained by either source of information alone. Classical statistical methods avoid prior distributions. In classical statistics, you might include in your model a predictor (for example), or you might exclude it, or you might pool it as part of some larger set of predictors in order to get a more stable estimate. These are pretty much your only choices.


Paper: Bayesian statistics and modelling

#artificialintelligence

Bayesian statistics and modelling is an open access paper published by Nature Reviews as part of its first volume of Methods Primers. Bayesian statistics is an approach to data analysis based on Bayes' theorem, where available knowledge about parameters in a statistical model is updated with the information in observed data. The background knowledge is expressed as a prior distribution and combined with observational data in the form of a likelihood function to determine the posterior distribution. The posterior can also be used for making predictions about future events. This Primer paper describes the stages involved in Bayesian analysis, from specifying the prior and data models to deriving inference, model checking and refinement.


Bayesian Machine Learning in Python: A/B Testing

#artificialintelligence

A/B testing is used everywhere. A/B testing is all about comparing things. If you're a data scientist, and you want to tell the rest of the company, "logo A is better than logo B", well you can't just say that without proving it using numbers and statistics. Traditional A/B testing has been around for a long time, and it's full of approximations and confusing definitions. In this course, while we will do traditional A/B testing in order to appreciate its complexity, what we will eventually get to is the Bayesian machine learning way of doing things. First, we'll see if we can improve on traditional A/B testing with adaptive methods.