Machine learning prowess on display

#artificialintelligence

More than 80 Amazon scientists and engineers will attend this year's International Conference on Machine Learning (ICML) in Stockholm, Sweden, with 11 papers co-authored by Amazonians being presented. "ICML is one of the leading outlets for machine learning research," says Neil Lawrence, director of machine learning for Amazon's Supply Chain Optimization Technologies program. "It's a great opportunity to find out what other researchers have been up to and share some of our own learnings." At ICML, members of Lawrence's team will present a paper titled "Structured Variationally Auto-encoded Optimization," which describes a machine-learning approach to optimization, or choosing the values for variables in some process that maximize a particular outcome. The first author on the paper is Xiaoyu Lu, a graduate student at the University of Oxford who worked on the project as an intern at Amazon last summer, then returned in January to do some follow-up work.


CES for Marketers: Alexa Wows, Virtual Reality Underwhelms

#artificialintelligence

Over the past few years the CES trade show has become a familiar post-holidays pilgrimage for many of the country's biggest marketers. They see the event as a way to get a sneak peek at the latest tech gadgets and technologies that can help them engage with their customers. This year marketing executives from companies such as Coca-Cola, Unilever, Johnson & Johnson, Campbell Soup and PepsiCo Inc. made their way to Las Vegas for the gathering. The convention was jam-packed with everything from self-driving cars to robots that play chess to Procter & Gamble's air-freshener spray that can connect with Alphabet Inc.'s Nest home to automatically release pleasant scents in the home. But there was one category that seemed to especially win over marketers: virtual assistants.


GAI Networks for Utility Elicitation

AAAI Conferences

Assuming the decision maker behaves according to the EU model, we investigate the elicitation of generalized additively decomposable utility functions on a product set (GAI-decomposable utilities). We propose a general elicitation procedure based on a new graphical model called a GAI-network. The latter is used to represent and manage independences between attributes, as junction graphs model independences between random variables in Bayesian networks. It is used to design an elicitation questionnaire based on simple lotteries involving completely specified outcomes. Our elicitation procedure is convenient for any GAI-decomposable utility function, thus enhancing the possibilities offered by UCP-networks.


Some Properties of Batch Value of Information in the Selection Problem

Journal of Artificial Intelligence Research

Given a set of items of unknown utility, we need to select one with a utility as high as possible ("the selection problem"). Measurements (possibly noisy) of item values prior to selection are allowed, at a known cost. The goal is to optimize the overall sequential decision process of measurements and selection. Value of information (VOI) is a well-known scheme for selecting measurements, but the intractability of the problem typically leads to using myopic VOI estimates. Other schemes have also been proposed, some with approximation guarantees, based on submodularity criteria. However, it was observed that the VOI is not submodular in general. In this paper we examine theoretical properties of VOI for the selection problem, and identify cases of submodularity and supermodularity. We suggest how to use these properties to compute approximately optimal measurement batch policies, with an example based on a "wine selection problem".


Extended RDF as a Semantic Foundation of Rule Markup Languages

AAAI Conferences

Ontologies and automated reasoning are the building blocks of the Semantic Web initiative. Derivation rules can be included in an ontology to define derived concepts, based on base concepts. For example, rules allow to define the extension of a class or property, based on a complex relation between the extensions of the same or other classes and properties. On the other hand, the inclusion of negative information both in the form of negation-asfailure and explicit negative information is also needed to enable various forms of reasoning. In this paper, we extend RDF graphs with weak and strong negation, as well as derivation rules. The ERDF stable model semantics of the extended framework (Extended RDF) is defined, extending RDF(S) semantics. A distinctive feature of our theory, which is based on Partial Logic, is that both truth and falsity extensions of properties and classes are considered, allowing for truth value gaps. Our framework supports both closed-world and open-world reasoning through the explicit representation of the particular closed-world assumptions and the ERDF ontological categories of total properties and total classes.