Talend Recognized in CRN's Big Data 100 List for Third Consecutive Year - NASDAQ.com

#artificialintelligence

REDWOOD CITY, Calif., May 22, 2018 (GLOBE NEWSWIRE) -- Talend (NASDAQ: TLND), a leader in cloud data integration solutions, has been named to the 2018 CRN Big Data 100 list, a brand of The Channel Company. This annual list recognizes vendors that have demonstrated an ability to innovate in bringing to market products and services that help businesses work with one of the most dynamic, fastest growing segments of the IT industry - Big Data. As a result of Talend's inclusion in the CRN Big Data 100, Solutions Review selected Talend Open Studio for Data Integration and Talend Cloud among its list of "7 Data Integration Tools We Recommend". The data explosion in recent years has fueled a vibrant big data technology industry. Businesses need innovative products and services to capture, integrate, manage and analyze the massive volumes of data they are grappling with every day.


80/20 Rule of Data Science: Hear How Fast, Easy Data Integration Can Break It

@machinelearnbot

At this year's Strata Data Conference in New York City, Syncsort's Paige Roberts sat down with John Myers (@johnlmyers44) of Enterprise Management Associates to discuss what he sees in the evolving Big Data landscape. In this final blog in the three-part interview, we'll discuss the 80/20 rule of data science which points out that most data scientists spend 80% of their time getting data ready for analysis, rather than doing what they do best.


Transforming Big Data into Meaningful Insights - insideBIGDATA

#artificialintelligence

In this special guest feature, Marc Alacqua, CEO and founding partner of Signafire, discusses a useful approach to data – known as data fusion – which is essentially alchemy-squared, turning not just one but multiple raw materials in to something greater than the sum of their parts. It goes beyond older methods of big data analysis, like data integration, in which large data sets are simply thrown together in one environment. Marc is a decorated combat veteran of the U.S. Army Special Operations Forces. For his service during Operation Iraqi Freedom, he was cited for "exceptionally conspicuous gallantry" and awarded two Bronze Star Medals and the Army Commendation Medal for Valor. A 20-year veteran and Lieutenant Colonel, Marc has extensive command experience in both combat and peace time, having commanded airborne and light infantry as well as special operations units.


Texas hospital struggles to make IBM's Watson cure cancer

PCWorld

If IBM is looking for a new application for its Watson machine learning tools, it might consider putting health care providers' procurement and systems integration woes ahead of curing cancer. The fall-out from that project has now prompted the resignation of the cancer center's president, Ronald DePinho, the Wall Street Journal reported Thursday. The university recently published an internal audit report into the procurement processes that led it to hand almost $40 million to IBM and over $21 million to PwC for work on the project, almost all of it without board approval. It noted that the scope of its review was limited to contracting and procurement practices and compliance issues, and did not cover project management and system development activities. The audit "should not be interpreted as an opinion on the scientific basis or functional capabilities of the system in its current state," because a separate review of those aspects of the project is being conducted by an external consultant, it said.


Thompson Sampling for Noncompliant Bandits

arXiv.org Machine Learning

Thompson sampling, a Bayesian method for balancing exploration and exploitation in bandit problems, has theoretical guarantees and exhibits strong empirical performance in many domains. Traditional Thompson sampling, however, assumes perfect compliance, where an agent's chosen action is treated as the implemented action. This article introduces a stochastic noncompliance model that relaxes this assumption. We prove that any noncompliance in a 2-armed Bernoulli bandit increases existing regret bounds. With our noncompliance model, we derive Thompson sampling variants that explicitly handle both observed and latent noncompliance. With extensive empirical analysis, we demonstrate that our algorithms either match or outperform traditional Thompson sampling in both compliant and noncompliant environments.