Goto

Collaborating Authors

Remote learning got you down? Here are the best educational sites for kids.

Mashable

We are living in a new age of widespread remote, online learning. Whether it's homeschool parents turning to online resources to help plan lessons, new families looking for activities for their housebound kids over the summer, or high schoolers looking for additional test prep help, the internet is becoming a virtual classroom for a growing number of kids. And the good news is, the quality of online learning platforms has only grown to meet this demand. Some offer games that teach young children in a fun, engaging way that barely feels like school, while others offer in-depth curriculums in foreign languages for students whose parents only speak one language. So what should you look for when searching for a good online learning platform?



Practical Reinforcement Learning Coursera

#artificialintelligence

About this course: Welcome to the Reinforcement Learning course. Here you will find out about: - foundations of RL methods: value/policy iteration, q-learning, policy gradient, etc. --- with math & batteries included - using deep neural networks for RL tasks --- also known as "the hype train" - state of the art RL algorithms --- and how to apply duct tape to them for practical problems.


Artificial Intelligence IV - Reinforcement Learning in Java

@machinelearnbot

This course is about Reinforcement Learning. The first step is to talk about the mathematical background: we can use a Markov Decision Process as a model for reinforcement learning. We can solve the problem 3 ways: value-iteration, policy-iteration and Q-learning. Q-learning is a model free approach so it is state-of-the-art approach. It learns the optimal policy by interacting with the environment.


IBM Machine Learning

#artificialintelligence

Offered by IBM. Machine Learning is one of the most in-demand skills for jobs related to modern AI applications, a field in which hiring has grown 74% annually for the last four years (LinkedIn). This Professional Certificate from IBM is intended for anyone interested in developing skills and experience to pursue a career in Machine Learning and leverage the main types of Machine Learning: Unsupervised Learning, Supervised Learning, Deep Learning, and Reinforcement Learning. It also complements your learning with special topics, including Time Series Analysis and Survival Analysis. This program consists of 6 courses providing you with solid theoretical understanding and considerable practice of the main algorithms, uses, and best practices related to Machine Learning . You will follow along and code your own projects using some of the most relevant open source frameworks and libraries. Although it is recommended that you have some background in Python programming, statistics, and linear algebra, this intermediate series is suitable for anyone who has some computer skills, interest in leveraging data, and a passion for self-learning. We start small, provide a solid theoretical background and code-along labs and demos, and build up to more complex topics. In addition to earning a Professional Certificate from Coursera, you will also receive a digital Badge from IBM recognizing your proficiency in Machine Learning.