Weightless Neural Network with Transfer Learning to Detect Distress in Asphalt

arXiv.org Machine Learning

Abstract-- The present paper shows a solution to the problem of automatic distress detection, more precisely the detection of holes in paved roads. To do so, the proposed solution uses a weightless neural network known as Wisard to decide whether an image of a road has any kind of cracks. In addition, the proposed architecture also shows how the use of transfer learning was able to improve the overall accuracy of the decision system. As a verification step of the research, an experiment was carried out using images from the streets at the Federal University of Tocantins, Brazil. The architecture of the developed solution presents a result of 85.71% accuracy in the dataset, proving to be superior to approaches of the state-of-the-art. I.INTRODUCTION In Brazil, most of the traffic is driven on asphalt roads.


Anomaly Generation using Generative Adversarial Networks in Host Based Intrusion Detection

arXiv.org Machine Learning

Generative adversarial networks have been able to generate striking results in various domains. This generation capability can be general while the networks gain deep understanding regarding the data distribution. In many domains, this data distribution consists of anomalies and normal data, with the anomalies commonly occurring relatively less, creating datasets that are imbalanced. The capabilities that generative adversarial networks offer can be leveraged to examine these anomalies and help alleviate the challenge that imbalanced datasets propose via creating synthetic anomalies. This anomaly generation can be specifically beneficial in domains that have costly data creation processes as well as inherently imbalanced datasets. One of the domains that fits this description is the host-based intrusion detection domain. In this work, ADFA-LD dataset is chosen as the dataset of interest containing system calls of small foot-print next generation attacks. The data is first converted into images, and then a Cycle-GAN is used to create images of anomalous data from images of normal data. The generated data is combined with the original dataset and is used to train a model to detect anomalies. By doing so, it is shown that the classification results are improved, with the AUC rising from 0.55 to 0.71, and the anomaly detection rate rising from 17.07% to 80.49%. The results are also compared to SMOTE, showing the potential presented by generative adversarial networks in anomaly generation.


One-class Collective Anomaly Detection based on Long Short-Term Memory Recurrent Neural Networks

arXiv.org Machine Learning

Intrusion detection for computer network systems has been becoming one of the most critical tasks for network administrators today. It has an important role for organizations, governments and our society due to the valuable resources hosted on computer networks. Traditional misuse detection strategies are unable to detect new and unknown intrusion types. In contrast, anomaly detection in network security aims to distinguish between illegal or malicious events and normal behavior of network systems. Anomaly detection can be considered as a classification problem where it builds models of normal network behavior, of which it uses to detect new patterns that significantly deviate from the model. Most of the current approaches on anomaly detection is based on the learning of normal behavior and anomalous actions. They do not include memory that is they do not take into account previous events classify new ones. In this paper, we propose a one class collective anomaly detection model based on neural network learning. Normally a Long Short Term Memory Recurrent Neural Network (LSTM RNN) is trained only on normal data, and it is capable of predicting several time steps ahead of an input. In our approach, a LSTM RNN is trained on normal time series data before performing a prediction for each time step. Instead of considering each time-step separately, the observation of prediction errors from a certain number of time-steps is now proposed as a new idea for detecting collective anomalies. The prediction errors of a certain number of the latest time-steps above a threshold will indicate a collective anomaly. The model is evaluated on a time series version of the KDD 1999 dataset. The experiments demonstrate that the proposed model is capable to detect collective anomaly efficiently


Deep Anomaly Detection Using Geometric Transformations

Neural Information Processing Systems

We consider the problem of anomaly detection in images, and present a new detection technique. Given a sample of images, all known to belong to a ``normal'' class (e.g., dogs), we show how to train a deep neural model that can detect out-of-distribution images (i.e., non-dog objects). The main idea behind our scheme is to train a multi-class model to discriminate between dozens of geometric transformations applied on all the given images. The auxiliary expertise learned by the model generates feature detectors that effectively identify, at test time, anomalous images based on the softmax activation statistics of the model when applied on transformed images. We present extensive experiments using the proposed detector, which indicate that our algorithm improves state-of-the-art methods by a wide margin.


Deep Anomaly Detection Using Geometric Transformations

Neural Information Processing Systems

We consider the problem of anomaly detection in images, and present a new detection technique. Given a sample of images, all known to belong to a ``normal'' class (e.g., dogs), we show how to train a deep neural model that can detect out-of-distribution images (i.e., non-dog objects). The main idea behind our scheme is to train a multi-class model to discriminate between dozens of geometric transformations applied on all the given images. The auxiliary expertise learned by the model generates feature detectors that effectively identify, at test time, anomalous images based on the softmax activation statistics of the model when applied on transformed images. We present extensive experiments using the proposed detector, which indicate that our algorithm improves state-of-the-art methods by a wide margin.